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Preface

Production planning and control systems suffer from insufficient computa-
tional support in the field of production scheduling. Practical requirements
dictate highly constrained mathematical models with complex and often con-
tradicting objectives. Therefore scheduling even in computerized manufactur-
ing systems still relies on simple priority rule based heuristics. Thus, we can
expect a great so far unexploited optimization potential in manufacturing
environments.

Within the last decade academic research in scheduling has gained a signi-
ficant progress due to modern Local Search based heuristics. Much effort has
been put into suitable neighborhood definitions which go for the key feature
of Local Search. However, it remains questionable whether this work can be
transferred in order to fit the flexible requirements of production scheduling.

Evolutionary Algorithms can be formulated almost independently of the
detailed shaping of the problems under consideration. As one would expect,
a weak formulation of the problem in the algorithm comes along with a quite
inefficient search. Nevertheless, for practical requirements the advantage of
constraint and objective independence is most obvious.

Dirk Mattfeld applies Evolutionary Algorithms to the Job Shop Schedul-
ing Problem. He analyzes the problem and gives a survey on conventional
solution techniques and recent Local Search approaches. He covers Evolu-
tionary Algorithms and their appliance to combinatorial problems. Then, he
performs a search space analysis for the Job Shop Problem before he develops
a Genetic Algorithm. Finally he refines this algorithm resulting in a parallel
genetic search approach.

The benefit of this book is twofold. It gives a comprehensive survey of
recent advances for both, production scheduling and Evolutionary Algorithms
in the didactic way of a textbook. Moreover, it presents an efficient and robust
optimization strategy which can cope with varying constraints and objectives
of real world scheduling problems.

Bremen, November 1995 Herbert Kopfer
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1. Introduction

Scheduling allocates resources over time in order to perform a number of
tasks. Typically resources are limited and therefore tasks are assigned to re-
sources in a temporal order. From an economic point of view limited resources
are scarce goods and consequently the problem of task scheduling is of more
than just academic relevance.

Following Van Dyke Parunak (1992) scheduling is circumscribed by ask-
ing what has to be done where and when. A task (what) occupies a dedi-
cated resource exclusively (where) for some period of time (when). A group
of task primitives may form a complex, in which several tasks have to pass
resources in a certain order. In this way the temporal order of resource allo-
cations is restricted by dependencies among the task primitives. Any process
that defines a subset of whatxwherexwhen can be said to execute scheduling.

1.1 Production Planning

Scheduling in a manufacturing environment allocates machines for processing
a number of jobs. This function is embedded in the the domain of produc-
tion planning and control (PPC), compare e.g. Scheer (1989). The purposes
covered by a PPC system are outlined best by considering the information
flow in a manufacturing system. Figure 1.1 is taken from Pinedo (1995) and
sketches a simplified information flow while neglecting the interfaces to other
functions of a manufacturing environment.

Demand forecasts and customer orders are input to the medium- to long-
term production planning. A master schedule is built resulting in the demand
of end product quantities and their desired due dates. On the basis of quanti-
ties and due dates the material required for production is planned according
to volume and period. This process results in material requirements of forth-
coming production periods which have to be supplied in time.

The material requirements planning is highly interwoven with the capacity
planning. Here, temporal assignments of orders to the available processing
capacity are shifted such that capacity bottlenecks are avoided and due dates
are kept. Up to this stage coarse grained production planning is performed
on the basis of customer orders. Now shop orders (jobs) and their release
times are introduced as an outcome of the capacity planning.
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Fig. 1.1. Information flow in a manufacturing system.

The jobs are input to the scheduling engine of the PPC system. Pro-
duction scheduling performs lot sizing, keeps capacity constraints and finally
produces a detailed schedule, i.e. determines the periods of processing some
job on its dedicated machines. Thereby scheduling pursues an economically
motivated objective. Typically, a reduction of the work in-process inventory
is pursued by increasing the throughput of jobs. Moreover, scheduling aims
to avoid delivery delays of customer orders and tries to make full use of the

available production capacity.

Production planning finishes with dispatching already scheduled jobs to
the shop floor management. The organizing of the schedule engine is subject

to the following considerations.
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1.2 Production Scheduling

In manufacturing systems operations (tasks) are processed by machines (re-
sources) for a certain processing time (time period). Typically, the number
of machines available is limited and a machine can process a single operation
at a time. Often, the operations cannot be processed in arbitrary orders but
obey to a prescribed processing order. Jobs often follow technological con-
straints which define a certain type of shop floor. In a flow shop all jobs pass
the machines in an identical order. In a job shop technological constraints
may differ from job to job. In an open shop exists no technological restriction
and therefore the operations of jobs may be processed in arbitrary orders.

Apart from technological constraints of the three general types of shop
floors, a wide range of additional constraints may be taken into account.
Among those, job release times and due dates as well as order dependent
machine setup times are the most common ones.

Production scheduling determines starting times of operations without
violating technological constraints such that processing times of identical ma-
chines do not overlap in time. The resulting time table is called a schedule.
Thereby scheduling pursues at least one economic objective. Typical objec-
tives are the reduction of the makespan of an entire production program, the
minimization of mean job tardiness, the maximization of machine load or
some weighted average of many similar criteria.

When neglecting technological constraints the solution space of a schedul-
ing problem can be approximated by the cardinality of the product of
what X where x when. For reasonably sized problems the computational time
needed for solving the problem can be from very long up to intractable.

Expert systems offer solutions to the problem of tractability. Knowledge
based reasoning makes production scheduling tractable by either a simplifi-
cation or a decomposition of the overall problem. A comprehensive survey on
expert systems for scheduling is given by Kusiak and Chen (1988).

Production scheduling problems can be subject to extremely many and/or
complicated constraints so that, in some cases, it is difficult to even find a
feasible solution. A simplification of the overall problem is obtained by relax-
ing conflicting constraints in a way that feasibility of the resulting solutions
is still assured. In order to achieve feasibility, the consequences of constraint
relaxations are controlled by the inference machine of the expert system. This
process requires a detailed knowledge of the production system itself.

In practice, a manufacturing system typically deals with a large number
of tasks. The size of the problem is reduced by decomposing it in such a way
that the problem still retains its original properties. Typically, a hierarchical
decomposition of a multi-level problem is proposed by taking detailed know-
ledge of the production system into account. Both, simplification by relax-
ation and hierarchical decomposition, for instance is used in the constraint-
directed search approach of Fox (1990).
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Manufacturing is typically a “sustained pursuit”, hence the character of
scheduling is less of static than of dynamic type. Considering release times
and due dates of jobs in a dynamic production environment, a temporal
decomposition of the overall problem suggests itself. Here, the size of the
actual problem may be reduced by neglecting operations whose jobs have
not yet been released or whose due dates are non-critical in time. Such a
decomposition approach is reported in Raman et al. (1989).

1.3 Heuristic Search

Expert systems are well suited for breaking down the complexity of scheduling
problems, but they do not always succeed in generating competitive opera-
tional schedules. Even the use of human expert knowledge (e.g. production
rules) may lead to poor results in the face of an increasing problem size, com-
pare Glover (1989). Thus, we can expect that a reasonable solution quality
can be obtained in polynomial time whereas a better performance requires
an iterative search process.

Since uninformed search by enumeration methods seems computational
prohibitive for large search spaces, heuristic search receives increasing atten-
tion, see Morton and Pentico (1993). Instead of searching the problem space
exhaustively, modern heuristic techniques concentrate on guiding the search
towards promising regions of the search space, compare Reeves (1993).

A wide range of different heuristic search techniques have been proposed
which all have some basic component parts in common. A representation of
partial- and complete solutions is required. Next, operators are needed which
either extend partial solutions or modify complete solutions. An objective
function is needed which either estimates the costs of partial solutions or
determines the costs of complete solutions. The most crucial component of
heuristic search techniques is the control structure which guides the search.
Finally, a condition for terminating the iterative search process is required.

Prominent heuristic search techniques are, among others, Simulated An-
nealing, Tabu Search and Evolutionary Algorithms. The first two of them
have been developed and tested extensively in combinatorial optimization.
To the contrary, Evolutionary Algorithms have their origin in continuous op-
timization. Their theoretical foundation is not well suited for discrete search
spaces. Although numerous approaches to combinatorial problems exists, this
research still lacks comparability with other heuristic search techniques.

This might be hindered by the biologically inspired language which has
been adopted by the evolutionary research community. Nevertheless, the com-
ponents of Evolutionary Algorithms have their counterparts to other heuristic
search techniques. A solution is called an individual which is modified by op-
erators like crossover and mutation. The objective function corresponds to the
fitness evaluation. The control structure has its counterpart in the selection
scheme of Evolutionary Algorithms.
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In Evolutionary Algorithms, the search is loosely guided by a multi-set of
solutions called a population, which is maintained in parallel. After a number
of iterations (generations) the search is terminated by means of some crite-
rion. A careful evaluation of the suitability of Evolutionary Algorithms for
production scheduling is subject of this thesis. Thereby particular attention
is paid to the conditions which must be fulfilled so that guiding the search
succeeds.

We have chosen the general Job Shop Problem as a representative of the
scheduling domain, because it is known to be extremely difficult to solve, it
is strongly motivated by practical requirements, and a good deal of previous
research has been done and therefore many benchmarks exist, compare e.g.
Blazewicz et al. (1995). This enables us to compare Evolutionary Algorithms
with other approaches proposed.

Nevertheless, the standard Job Shop Problem is an oversimplification of
practical requirements in scheduling. In the real world we often follow several
objectives simultaneously even though different objectives may mathemati-
cally contradict each other. At least the objective of minimizing the makespan
rarely meets the requirements of manufacturing systems.

Unlike other heuristics proposed, Evolutionary Algorithms offer the op-
portunity to formulate the algorithm almost independently of an objective
pursued. This degree of freedom is achieved at the expense of a relatively
inefficient search compared to more tailored techniques. Nevertheless, the
advantage of objective independence is most obvious.

1.4 Overview of the Thesis

In Chap. 2 we give a formulation of the Job Shop Problem in terms of the
graph representation. A subset of the arcs of the problem graph represents
a schedule for which we give a procedure for the calculation of the objective
value. Next, we turn to schedule generation techniques, which incrementally
construct feasible schedules by inserting arcs into the graph. Finally, enumer-
ation techniques for the Job Shop Problem are sketched.

In Chap. 3 we discuss Local Search techniques which may improve the
solution quality once a schedule is built. Local Search techniques modify a
candidate solution by means of neighborhood moves. First, several neighbor-
hood definitions are introduced. Then, hill climbing techniques for the Job
Shop Problem are evaluated. Finally, Local Search extensions are described
which tentatively guide the search.

In Chap. 4 we introduce the paradigms of Evolutionary Algorithms and
outline their previous applications to combinatorial problems. Here, particu-
lar attention is paid to the phenomenon of epistasis and its effects on genetic
operators like crossover. This Chapter finishes with a discussion of hybridiza-
tion, i.e. the incorporation of Local Search into Evolutionary Algorithms.
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In Chap. 5 we give an outlook on the perspectives of Evolutionary Search
for the Job Shop Problem. First, different ways of representing a schedule
for genetic adaptation are discussed. We end up with the definition of a
representation for which the notion of the fitness landscape is introduced.
Based on this notion several perspectives of genetic adaptation for the Job
Shop Problem are evaluated.

In Chap. 6 we propose a hybrid Genetic Algorithm. First, we outline a
Genetic Algorithm template. Then we constitute an inheritance management
as well as a population management. The various parameters are either eval-
uated separately or their setting is drawn from arguments of plausibility.
Finally, we present computational results of the algorithm.

In Chap. 7 we enhance the Genetic Algorithm by a model of a structured
population. This model introduces a limited dispersal between the individuals
of a population. The population flow of the resulting algorithm is discussed
in detail. Finally a model of inherited attitudes of individuals is proposed
and investigated in the following.

In Chap. 8 we compare the approaches considered throughout the thesis.
Then we present an extensive computational study on 162 benchmark prob-
lems for the most efficient approach. Thereby particular attention is paid on
the suitability of Evolutionary search for either very difficult or very large
problem instances.

Finally we conclude in Chap. 9 with an outlook on the perspectives of
Evolutionary Search for real world production scheduling.



2. Job Shop Scheduling

Within the great variety of production scheduling problems the general job
shop problem (JSP) is the probably most studied one by academic research
during the last decade. It has earned a reputation for being notoriously dif-
ficult to solve. It illustrates at least some of the demands required by a wide
array of real world problems.

2.1 Representation of the JSP

Consider a shop floor where jobs are processed by machines. Each job consists
of a certain number of operations. Each operation has to be processed on a
dedicated machine and for each operation a processing time is defined. The
machine order of operations is prescribed for each job by a technological
production recipe. These technological constraints are therefore static to a
problem instance. Thus, each job has its own machine order and no relation
exists between the machine orders (given by the technological constraints) of
any of two jobs'. The basic JSP is a static optimization problem, since all
information about the production program is known in advance. Furthermore,
the JSP is purely deterministic, since processing times and constraints are
fixed and no stochastic events occur.

The most widely used objective is to find a feasible schedule such that
the completion time of the total production program (i.e. the makespan) is
minimized. Feasible schedules are obtained by permuting the processing or-
der of operations on the machines (operation sequence) but without violating
the technological constraints. Accordingly we face a combinatorial minimiza-
tion problem with constrained permutations of operations. More specifically,
the operations to be processed on one machine form an operation sequence
for this machine. A schedule for a problem instance consists of operation
sequences for each machine involved. Since each operation sequence can be
permuted independently of the operation sequences of other machines, we
have a maximum of (n!)™ different solutions to a problem instance, where n

! The case of identical machine order for all jobs involved defines the class of flow
shop problems (FSP) as a subset of the JSP. The FSP is referred to as line
processing in production scheduling.
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denotes the number of jobs and m denotes the number of machines involved.
According to Garey and Johnson (1979) the JSP is an NP-hard problem and
among those optimization problems it is one of the least tractable known. The
complete restrictions of the basic JSP are listed informally below, compare
e.g. French (1982).

No two operations of one job may be processed simultaneously.
No preemption (i.e. process interruption) of operations is allowed.
No job is processed twice on the same machine.

Each job must be processed to completion.

Jobs may be started at any time, no release times exist.

Jobs may be finished at any time, no due dates exist.

Jobs must wait for the next machine to be available.

No machine may process more than one operation at a time.
Machine setup times are negligible.

. There is only one of each type of machine.

. Machines may be idle within the schedule period.

. Machines are available at any time.

. The technological constraints are known in advance and are immutable.

e S S o e

— e
W= O ©

The set of constraints involved in real world applications is much more
complex. In practice, only a few assumptions of the basic JSP may hold. In
spite of the restrictive assumptions stated above, the JSP is already a noto-
riously hard scheduling problem. The JSP is popular in academic research as
a test-bed for different solution techniques to combinatorial problems. Fur-
thermore, benefit from previous research can only be obtained if a widely
accepted standard model exists.

Typical extensions of the basic JSP are the consideration of parallel ma-
chines, multi purpose machines, machine breakdowns and time windows in-
troduced by release times and due dates of jobs. Dynamic scheduling is consid-
ered when jobs are released stochastically throughout the production process.
Finally, in non-deterministic scheduling processing times and/or processing
constraints are evolving during the production process (e.g. order dependent
setup times).

2.1.1 Gantt-Chart Representation

In the following a closer look at the basic JSP is given which leads to the
Gantt-Chart representation. A problem instance consists of n jobs and m
machines, where J; denotes the j-th job (1<j<n) and M, denotes the i-th
machine (1<i<m). The machine order (technological constraints) for job J;
is given by ¢; = (M, )(1<h<m), where h denotes the h-th operation of .J;.
The processing time of an operation of job J; to be performed on machine M;
is given by p;;. The technological constraints ¢ as well as processing times p
are given problem data.
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The processing order (machine sequences) for machine M; is given by
Yi = (Jo..)(1<k<n), Where k denotes the k-th operation to be processed on
M;. A solution to the JSP can be formulated as a matrix 1. The problem
data of a JSP instance and one possible solution are given in Tab. 2.1 for
a JSP consisting of 3 jobs and 3 machines. Recall, that ¢ contains machine
numbers, p contains processing times and ¢ contains job numbers.

Table 2.1. Matrix representation of a JSP. The two matrices on the left side
represent given problem data, the right hand side matrix represents one solution of

the problem.
1 2 3 3 3 2 1 2 3
ein=1|2 3 1 pii=1|3 2 3 Yie=12 3 1
2 1 3 3 4 1 2 1 3

The processing unit of a job on a machine? is denoted as operation o;y.
Every operation o has at most two direct predecessor operations, a job prede-
cessor P.J, and a machine predecessor PM,. Note that the first operation of
a machine sequence has no PM, whereas the first operation of a job has no
PJ,. Analogous every operation has at most two direct successor operations,
a job successor SJ, and a machine successor SM,. The last operation of a
machine sequence has no SM, and the last operation of a job has no S.J,.
An operation is called schedulable if both, P.J, and PM, (as far as they are
defined) are already scheduled.

The objective is to find a processing order ¢ such that the total makespan
is minimized. A schedule is built successively by assigning starting times 7,
to schedulable operations. The starting time of an operation is determined
by the maximum completion time C,, of both of its predecessors.

Cojh =Tojn T Pjgjns  Tojn > maX(CPJo].h ; CPMO]-h ) (2'1)

The completion time of o;j is calculated by (2.1) with r,;, = 0 for unde-
fined P.J,,, and PM,,, . After all operations are scheduled, the makespan is
given by the maximum of all completion times Chyax.

An intuitive way of representing a JSP schedule is the Gantt-Chart. An
example is given in Fig. 2.1 for the matrices of Tab. 2.1. The Gantt-Chart
shows time units at the abscissa and machine numbers at the axis of ordinate.

— Each ordinate row ¢ consists of the operations to be processed on M; in the
order given by ¥;. E.g. the machine sequence of machine M; determines
J1 to be processed first, followed by J, and J3.

2 Problem instances, where each job is to be processed on each machine are called
rectangular because the number of operations is determined by n - m. As a
special case we consider quadratic problem instances with n = m. Although our
JSP model does not restrict to rectangular problems, all benchmarks considered
throughout this thesis are of rectangular type.
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— The operations are depicted in the length of their processing time. As an
example we consider the third operation to be processed on machine Mj.
Its job number J3 is obtained from ;3 and then its processing time 3 is
obtained from ps; .

— We determine the position of operations in the technological order of their
job. E.g. the third operation to be processed on M; is J3, compare ;3.
Now we scan 3 for M7 and find @32 with A = 2. Thus, the operation
considered is 032 which is to be processed as the second operation of J3.

— We rearrange the operations in the Gantt-Chart in such a way that an
operation with a lower index h of some job precedes an operation with a
higher index h. E.g. 093 is to be processed as the third operation of .Js,
compare @-3. Hence, operation 02 has to precede 0,3 in order to avoid a
simultaneous processing of operations of one job.

— Starting times and completion times of operations can now be taken di-
rectly from the abscissa. Job and machine predecessor dependencies are
outlined explicitly by machine idle times (in gray shade). The completion
time of the rightmost operation in the Gantt-Chart gives the makespan
achieved. In the example C,,, defines the Cpax value.

The operation 077 in Fig. 2.1 could be started at time unit 2 without
influencing the starting time of any other operation. Considering operation
starting times after the earliest possible starting times is known as passive
scheduling. Throughout this thesis we define the earliest possible starting
times as the actual starting times of operations. Scheduling all operations at
their earliest starting time is known as semi-active scheduling, i.e. a sched-
ule cannot be improved in terms of makespan without changing operation
sequences of machines.

A schedule is called active, if makespan improvement cannot be gained
even by changing any of the processing orders ¥;. In terms of the Gantt-chart
representation shown in Fig. 2.1 one can say that any permissible left shift of
an operation cannot improve the makespan. A non-delay schedule is given,
if no machine is kept idle when it could start processing some operation. We
can state that the class of passive schedules includes semi-active schedules
whereas the class of semi-active schedules includes active ones. Furthermore
the class of active schedules includes non-delay schedules. Concerning a mini-
mal makespan, at least one optimal schedule is an active schedule but not

machine

0 1 2 3 4 5 6 7 8 9 10 11 12time

Fig. 2.1. Example of a Gantt-Chart representation of a 3x 3 job shop problem.
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necessarily a non-delay schedule. The solution considered in Fig. 2.1 is semi-
active as well as active. Actually, it is an optimal one.

If the starting time of an operation cannot be delayed without causing a
deterioration of the makespan, it is called a critical operation. In the example
all operations apart from o017 are critical, since their starting time cannot be
delayed without worsening the makespan given by C,.,. A critical operation
cannot start delayed, since it has no buffer time available. At least one op-
eration, the job- or the machine successor starts immediately after a critical
one. Thus, the completion time of a critical operation is equal to the starting
time of at least one of its successor operations, e.g. Cy,, = 'y, in Fig. 2.1.

The buffer time is given by the minimum time span between the com-
pletion time of an operation and the starting time of its job- and machine
successor. For instance consider 023 and 012 which are direct successors of
operation o017. Here the buffer time is calculated min(5,6) — 3 = 2. The earli-
est starting time of an operation is sometimes referred to as head. A head of
an operation determines the amount of time needed before the operation can
be started. Analogous, a tail g,;, gives the time needed for the rest of the
production program after the completion of the operation considered. For all
critical operations head, processing time and tail adds up to Chax-

Cmax = Toj, + Dj.gjn + o, if 0jp is critical. (2.2)

Informally one can say that a tail indicates the amount of time needed
to complete the production program from the viewpoint of an operation. For
non-critical operations the tail gives a lower bound regarding the makespan.

2.1.2 Acyclic Graph Representation

Thus far an introduction to the JSP has been given by a simple example
based on the Gantt-Chart representation. In the following we give a problem
formulation based on a graph representation due to Roy and Sussman from
1964. This representation is described in Adams et al. (1988). The graph rep-
resentation of the JSP is used throughout this thesis.

Let V be the set of operations. Since operations are considered as members
of the set V from now on, we can drop the operation indices introduced in
the beginning of this chapter. Additionally to the operations V contains two
dummy operations b and e with processing times p, = p. = 0 denoting the
“begin” and “end” of the entire production program.

In order to express the precedence of operations regarding jobs and ma-
chines, the sets A and £ are introduced.

— Set A denotes the technological constraints as pairs of successive operations
v,w € V, such that v = PJ,, A w=2S5.J,.

— The set £ consists of m subsets &; denoting pairs of operations to be pro-
cessed on M;, such that v = PM, N w = SM,.
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Fig. 2.2. Graph representation for a simple problem instance.

Problem Representation. In the following a problem is represented as a
disjunctive graph G = (V, AUE) with the node set V, the conjunctive arc set
A and the disjunctive arc set £. The set £ is decomposed into subsets &; with
E= U:’;] &, such that there is one &; for each machine M;. The terms ‘node’
and ‘operation’ and the terms ’arc’ and ’constraint’ are used synonymously
depending on the context from now on.

The arcs in A and £ are weighted with the processing time of the oper-
ation representing the source node v of the arc (v, w). Hence, arcs starting
at operation v are identically weighted. Within A the dummy operation b
is connected to the first operation of each job. These arcs are weighted with
zero. The last operation of each job is incident to e and consequently weighted
with the processing times of the last operation in each case.

The graph representation of a JSP instance is shown in Fig. 2.2. The
different gray shadings denote the various machines on which the operations
are to be processed. In the following G is described in detail by referencing
the matrices ¢ and p of Tab. 2.1.

— Node b on the left side of the figure is the source of G and represents the
start of the entire production program. The sink e is placed on the right
side of the figure. The node e denotes the end of the production program.
Both, b and e have a zero processing time.

— The solid arcs of set A represent technological constraints between opera-
tions of a single job. E.g. the operations 1, 2 and 3 belong to job J; and
have to be processed in the technological order given by the solid arcs (1, 2)
and (2, 3). Furthermore, the arcs (b, 1) and (3, e) connect the first and last
operation of .J; with the dummy operations denoting the begin and end of
the entire production program.

— The dashed arcs of set £ represent machine constraints which are obtained
from matrix ¢. E.g. operation 2 is the second operation of .J; and operations
4 and 7 are the first operations of .J5 and .J3. These three operations have
to be processed on M as given by @12, 21 and 371. In this example subset
&y consists of all dashed arcs which fully connect operations 2, 4 and 7.
Theoretically, each of the three operations can precede all other operations
of Ms, such that arbitrary machine sequences 95 can be obtained for Ms.
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— The arc weights stand for the processing times obtained from matrix p.
They are used as costs of a connection between two incident operations.
E.g. operation 7 is the first operation of J3. According to (31 its related
machine is M,. The matrix element ps» contains its processing time 4.
Thus, arcs which have operation 7 as their source node are weighted with
a processing time of 4 units.

Schedule Representation. All pairs of operations given by arcs in A and
& cannot overlap in time. By taking up the processing times p, and p,, and
the starting times r, and r,, of pairs of incident operations v and w, we can
formulate the problem as a linear programming model.

min r,
Ty — Ty > Dy, (v,w) € A (2.3)
Ty 2 O; vEY ’
Tw =Ty 2Py V Ty —Tuy 2 Pu, (U,W)Ggi,iEM.

The goal is to find a feasible schedule for which r, is minimized. Since
e denotes the end of the entire production program and a zero processing
time is assigned to e, r. is equivalent to C. and C, is equivalent to Cpax.
The first inequality ensures the prescribed order (technological constraints) of
operations within each job. The second condition restricts the earliest starting
times of operations to non-negative numbers. The final constraints avoid the
simultaneous processing of operations on one machine (machine sequences).
Each solution obeying to the inequalities given in (2.3) is a feasible schedule.

In order to identify a feasible schedule we transform each &; into a machine
selection S;. Therefore we consider the inequalities in the last line of (2.3).
For each pair of disjunctive arcs (v,w) and (w,v) in & we discard the one
for which either r,, — r, > p, or r, — ry, > p, does not hold. This results in
S; C &;, such that S; contains no cycle and a Hamiltonian path exists among
the operations to be processed on M;. A selection S; corresponds to a valid
processing sequence of machine M;. Hence, obtaining S; from &; can be seen
in equivalence to sequencing machine M;.

A complete selection S = |J!", S; represents a schedule (i.e. a solution to
a problem instance) in the digraph Dg = (V, AU S). The acyclic selections
Si € S have to be chosen in a way that the first inequality of (2.3) holds. In

Fig. 2.3. Graph representation for one selection S carried out.
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this case Dg remains acyclic and therefore corresponds to a feasible solution.
Figure 2.3 gives an example of Dg for the solution formerly presented as a
Gantt-Chart in Fig. 2.1.

Si Hi
ovg o 9 Fig. 2.4. A machine se-

lection and the appropriate

Hamiltonian selection car-

Ae 9 e ried out for a machine se-
quence of 4 operations.

For computational purpose we consider in each machine selection just arcs
which establish the Hamiltonian path H; C S;. An example of a Hamiltonian
selection H; for machine M; with four operations is shown in Fig. 2.4. The
arcs in S; are chosen from &; such that S; is acyclic and all nodes can be
visited following a single path H; = {(1,2),(2,3),(3,4)}.

z & 3
4 Ty

> (B

3 (2) 3

Fig. 2.5. Graph representation for one Hamiltonian selection H carried out.

A complete Hamiltonian selection ‘H C S is shown in Fig. 2.5. It has the
same properties as S with respect to the precedence relation of operations.
Thus, for our purpose Dg = (V, AUS) and Dy = (V, AUH) are equivalent.
Both sets, S and H determine the complete set of machine constraints and
therefore represent the same schedule of a problem instance. Opposite to
S which requires m - 21 arcs, H is defined by m(n — 1) arcs only. For
instance, the 4 nodes of Fig. 2.4 require 6 arcs for S; and 3 arcs for H; in
order to describe the precedence relations between the nodes involved.

We call a union of arcs P C ‘H a partial selection. Note that a partial
schedule Dp = (V, AUP) is already an acyclic digraph, although it represents
an incomplete solution. An operation to be processed on machine M; and not
connected by any arc from the set £; can be viewed as not yet sequenced. Its
job constraints from A are already established. Therefore its processing time
contributes to the makespan as if the operation is processed on a machine
with infinite capacity. Adding any further arcs from £ to P can only increase
Chax- Therefore C,ax of Dp can serve as a lower bound of the makespan.
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2.1.3 The Critical Path

The makespan of a schedule is equal to the length of a longest path in Dy .
Thus solving a JSP is equivalent to finding a complete Hamiltonian selection
‘H that minimizes the length of the longest path in the directed graph Dy .

An advantage of the graph representation is the opportunity to use well-
known graph algorithms. Graph representations similar to the one introduced
by Adams et al. (1988) are used in Project-Management since the sixties. We
use a longest path method adopted from a standard algorithm described in
Christofides (1975) in order to calculate the makespan.

1. In the first step a node array T of length [ = |V| is filled with the
topological sorted v € V with respect to the arcs in A U H defining a
complete schedule. For any arc (v, w) node v is sorted prior to w. This
can be achieved by the labeling algorithm proposed by Kahn (1962).

2. In the next step we determine the heads of all nodes in 7 defining the
starting times r,. In the beginning all r, are set to zero.

rr, = max(rpjy +DPpPJir s TPMy, + PPMs,)
. (2.4)
rr, = max(rpyy, + PPJrTPMr, + PPMxz,)

The makespan is given by Cpax = re. The node e is the last element of
T because e denotes the sink of the graph Dy.

3. Optionally, we may calculate the tails g,,v € V, which are given by the
longest path from v to e. All tails g, are initialized to zero.

qr, = max(gs.yy, + P, dsMy, + PT;)
: (2.5)
qr, = max(gs.jy, +P1y;qsMy, +PTY)

Node v is critical if r, + p, + g, = r¢ holds, otherwise r, + p, + g, gives
a lower bound for makespan with respect to v.

4. If we are interested in one longest path itself, we trace backwards from
the sink of the graph towards the source following critical operations.
Any arc (v,w) is critical for which r, + p, = ry, holds. Actually there
may exist more than one critical path in Dy, although we concentrate
on an arbitrary one in the following.

Step 1 4 evaluates the objective function f for a schedule Dpg. Since
D=V, A is fixed and Dy = (V, AU H) is determined by the complete
Hamiltonian selection H only, we use the shorthand f(#) in the following.
The result of f is referred to as makespan or as Chax in the following.

An example for the calculation of the heads r, the tails ¢ and the crit-
ical path itself is given in Fig. 2.6. This figure shows a feasible solution in
the acyclic graph representation. The three machines involved are given in
different gray shades of the nodes.
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Fig. 2.6. One critical path shown for the acyclic JSP graph.

First 7 is obtained by sorting the nodes v,w € V such that for any arc
(v, w) node v is sorted prior to w. Table 2.2 shows the topological sorted nodes
of 7 in the first line. The corresponding processing times p are given in the
second line. Now, the heads r are calculated. Finally the tails ¢ are calculated
and now critical nodes can be determined by testing r, + p, + g, = 7. In the
example, only operation 1 is non-critical. For all other operations r,,p,, ¢,
add up to r. = 12. One resulting critical path is shown in Fig. 2.6 with bold
face arcs.

4 b 1 7253008 9 ¢ Table 2.2. Processing times
pv 0 2433233 ! heads. and tails ’
r, 00 026 2958 11 12 ads, and tails.

@ 12 7 10 6 3 7 1 4 1 0 O

Figure 2.7 shows the corresponding job-oriented Gantt-Chart. Again, the
gray scale of operations refers to the machines like shown in Fig. 2.6. Different
to the machine-oriented Gantt-Chart of Fig. 2.1 where the axis of ordinate
depict machines, here jobs of the problem instance are depicted by the axis
of ordinate. In this way successive operations along the abscissa correspond
to a path of solid arcs in Fig. 2.6 denoting a job.

The length of the blocks correspond to the processing time of the oper-
ations. Consequently, the white blocks give the waiting times of jobs in the
production process. Here, the longest path is given by bold face operations.

job
3 7 8 9
2 4 5) 6
1 1 2 S
0 1 2 3 4 5 6 7 8 9 10 11 12 time

Fig. 2.7. Job oriented Gantt-Chart representation of the 3x3 JSP example.
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2.2 Schedule Generation Techniques

Since the JSP is known to be NP-hard, in general suboptimal solutions built
by heuristics® receive increasing attention beside optimal ones built by enu-
meration algorithms. Only smaller problem sizes in terms of machines and
jobs can be solved in polynomial time by construction algorithms as reported
by Blazewicz et al. (1993):

— JSP of two jobs.
— JSP of two machines where all operations have identical processing time.
— JSP of two machines where jobs do not have more than two operations.

In other cases the JSP remains NP-hard. In the first place an algorithm
for building semi-active schedules is presented. Next, an enhanced version of
this algorithm is described which always produces active schedules. Third,
we discuss the incorporation of priority relations among operations into the
presented algorithms. Then we turn to enumeration algorithms and sketch
the ideas of Branch and Bound. Finally the Shifting Bottleneck heuristic is
described.

2.2.1 Temporal Scheduling of Operations

A simple framework for building Dy from the scratch, i.e. from D as shown
in Fig. 2.8, is presented. This framework schedules operations in a temporal
order independently of their assigned machine.

Generally, we start with D, as shown in Fig. 2.8. At a first stage, we can
schedule one operation from {1,4,7}. At further stages, an operation v is
called schedulable if its predecessors PM, and P.J, are already scheduled.
The number of stages t in the scheduling process is determined by the number
of operations of the problem instance.

7 8 3
2 O, 3 2
)
3 (2) 3

Fig. 2.8. Graph representation of technological constraints.

% A reasonable definition is given in Reeves (1993): A heuristic is a technique
which seeks good (i.e. near-optimal) solutions at a reasonable computational
cost without being able to guarantee either feasibility or optimality, or even in
many cases to state how close to optimality a particular feasible solution is.
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Let us define the set R C V of all schedulable operations at stage ¢ of
the scheduling process. Initially, R contains the first operation of each job,
i.e. the successors of the ’start’ operation b. We may reduce R by means of
a reduction operator ¥ capable of discarding non promising candidates from
R. We obtain the set SCR, such that S = ¥(R). In order to determine an
operation v to be scheduled next we declare a choice operator @, choosing
v = &(S). Summing up, we determine the candidate operation v by first
reducing R into S and second choosing a node v from S. Thus we may write
v = &(W(R)). Once a candidate v is chosen, we delete v from R. After v is
scheduled, we update R by adding v’s job successor S.J, to R so far it exists.

Furthermore we define a set K C V consisting of the last operations
scheduled on each machine. Initially K is empty, because no operations have
been scheduled so far. Scheduling an operation v at stage ¢t means to add the
operation v to the Hamiltonian selection ;. This is done by constructing
the machine constrained arc (w,v) such that w € K (w has been scheduled
last on its machine) and (w,v) € & (w and v are to be processed on the
same machine M;). If the first operation is scheduled on machine M;, no arc
is constructed. Each time an operation has been scheduled, w is replaced by
v in K. The algorithm described is presented in Fig. 2.9.

algorithm schedule is

R := successors of b

K:=10

while R # () do
S:=¥(R)
v = P(S5)
R := R\{v}
w:=ke K, (k,v)e&
K = K\{w}

if w exists then construct arc (w,v)
if SJ, exists then R:= RU{SJ,}
K := KU {v}
end while
end algorithm

Fig. 2.9. Framework for a schedule generation procedure.

Note that the scheduling procedure proposed above sequences operations
in accordance to a topological sorting of the digraph Dy . Hence, the label-
ing algorithm needed in order to achieve a topological sorting of operations,
compare p. 15, is superfluous. Therefore scheduling in a temporal order accel-
erates the evaluation of Cpax considerably. The operators ¥ and & determine
a control strategy of the scheduling algorithm. The operators ¥ and & are
modeled throughout the remainder of this chapter. In particular, we show
that introducing problem specific knowledge into ¥ and & can be used to
formulate simple scheduling heuristics.



2.2 Schedule Generation Techniques 19

At any stage t an operation can be chosen from R or S respectively,
such that the makespan of the partial selection built so far is least worsened.
These procedures are called insertion heuristics. Once scheduled, an opera-
tion remains fixed up to the end of the insertion procedure. Generally, these
algorithms perform excellent in early stages but suffer from a shrinking set of
choices in later stages. For this reason, a bi-directional insertion procedure is
proposed by Dell’ Amico and Trubian (1993). The procedure schedules oper-
ations alternately from the source and the sink of D in order to avoid poor
decisions for the last operations near the sink of the graph, i.e. the ending
operations of jobs.

2.2.2 Semi-Active versus Active Scheduling

In the following we focus on semi-active scheduling and then continue with
a closer look on active scheduling. Thereby we describe the algorithm due to
Giffler and Thompson (1960). Semi-active as well as active scheduling can be
described in terms of the (¥, @) framework shown in Fig. 2.9. We have already
seen that the set of active schedules constitutes a subset of semi-active sched-
ules. Since we know, that at least one of the optimal schedules is active, we
may concentrate on generating active schedules only, compare French (1982).
Anyway, the number of different active schedules of a moderate sized problem
instance is already tremendous.

Semi-Active Scheduling. Semi-active schedules are generated by schedul-
ing operations at their earliest starting times. Since we may schedule one
operation of every job at any stage, it is not necessary to reduce the set R by
the operator ¥. In this first approach ¥ simply copies R into S. Since we do
not incorporate preferences of choosing operations schedulable from R, the
& operator randomly chooses an operation from S. Although the algorithm
generates semi-active schedules, there is no reason to believe that it generates
near-optimal solutions in terms of the makespan.

Active Scheduling. Again we use the (¥, ®) framework from Fig. 2.9. The
Giffler and Thompson algorithm (G&T) performs similar to the one described
for semi-active scheduling, apart from that it generates active schedules. This
feature can be achieved by using an operator ¥ in a way that scheduling is
rather based on R than on the reduced set S. Scheduling one operation by
the G&T algorithm is done in three steps.

1. The shortest completion time C* of operations in R is calculated by C* =
min,eg(C,). The operation v € R with completion time C* determines
a machine M™. In case of a tie, M ™ is chosen arbitrarily.

2. The set S C R is derived such that the operations v € S require machine
M*, (M, = M*) and have an earliest starting time r, < C*. Since the
operations in S overlap in time, S is called the conflict set.

3. Now, one operation among the conflicting ones in S is chosen means of
the @ operator.
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c* cr

Joblj vi Job15 v
Job2§ Cow Job 2 S w
w: [ w3 )

Fig. 2.10. Example of the Giffler and Thompson algorithm.

C* gives the earliest possible completion time of the next operation to
be added to the partial selection Dp. The operations u,v,w in Fig. 2.10 are
assumed to be processed on M*. Operations ready to be scheduled appear
gray. On the left hand side of the figure C* is determined by operation u.
The set S consists of the conflicting operations u, v only, because r,, > C*.
Note that S # 0, since at least the operation for which C* was calculated is
a member of S. Assume operator @ chooses operation v. The right hand side
of the figure gives a situation we may meet at the next stage, if M* remains
the same machine. The operations u and w are still schedulable and C* is
determined by operation w this time.

5 Job1 S Vo
Joblj v :
: Job25 w ;
Job 2 ' w ;
JobBQ u

ws ] [B

Fig. 2.11. Counterexample to the Giffler and Thompson algorithm. A semi-active
schedule is obtained by scheduling a non-conflicting operation.

By examining a different ¥ operator we see that the G&T algorithm
always produces active schedules. If ¥ still works on operations of M™* ex-
clusively, but chooses operation w with 7, >C" this time, the starting time
of operation u is delayed. This situation is sketched in Fig. 2.11, ending up
with the situation shown on the right hand side. The schedule is semi-active
because a left shift of u prior to w is permissible without delaying w, com-
pare Sect. 2.1. Active schedules are typically better in terms of makespan
than semi-active ones. Keeping in mind, that at least one optimal schedule
is active, we may restrict the search to active schedules. So far, we did not
care about which operation to choose from the conflict set S. This choice is
subject of the following considerations.
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2.2.3 Schedule Generation Control

We have considered the ¥ operator in combination with a @ operator making
random choices from the set S. Thereby we have neglected any preferences
among the schedulable operations. In fact, there may be even strong prefer-
ences concerning either a prescribed scheduling order of operations or a guess
about the “right” choice. To examine the first case we focus on explicit per-
mutations of operations. The second case leads us to priority rules of choosing
operations.

Scheduling Explicit Permutations. A permutation is given explicitly by
an order of operations to be scheduled from left to right. Recall that schedul-
ing an operation of which the predecessors are not already scheduled leads
to an infeasible solution. Therefore we represent an operation v by its job
identifier. The job identifier j, (1 < j < n) occurs in a given permutation?
as often as there are operations belonging to job j. The k’th occurrence of a
job identifier refers to the k’th operation of this job. Since the permutation
consists of all operations its length is n-m — 2 because the operations b and
e are not part of the permutation.

The solution of the JSP with n = 3,m = 3 shown in Fig. 2.1 can be
represented by (1,2,2,3,1,3,2,3,1). Reading it from left to right the first
entry is a 1 and refers to the first operation of job 1. The next entry is a 2
and refers to the first operation of job 2. The third entry of the permutation
is 2 again. This time it refers to the second operation of job 2. Then, 3 refers
to the first operation of job 3 etc.

This permutation with repetition is introduced by Bierwirth (1995) in
analogy to the natural permutation scheme of the traveling salesman problem
(TSP) commonly used to represent this problem. The representation covers
all feasible solutions of a JSP instance but no infeasible ones. Since we do
not distinguish between different operations of a job (indeed, the scheduling
procedure itself cannot), the number of different permutations is somewhat
smaller than (n!)™, see Sect. 2.1. Almost independently from the ¥ operator
a more sophisticated @ operator can schedule an explicit permutation. The
@ operator may be modeled as follows. Whenever a set, of schedulable oper-
ations S is built, the operation v occuring first is picked while scanning the
permutation from left to right. After choosing an operation, the related job
identifier is deleted.

For the set up of a semi-active schedule always the first identifier in the
permutation is chosen since at any stage of the scheduling process exactly one
operation of every job may be scheduled. Hence we obtain a direct mapping
of the permutation to the schedule built. For active scheduling the situation
is slightly more difficult. We would find an appropriate operation for the

4 In this context a permutation is extended to the term of a permutation with
repetitions.
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first identifier among the operations in R. But since we look for an appro-
priate operation in the conflict set S, we may have to skip some elements
in the permutation before we find a suitable job identifier. Since a number
of permutations (representing semi-active schedules) lead to the same active
schedule, the mapping to active schedules is less direct. Anyway, we are not
able to find a representation which is restricted to active schedules only, since
we do not know the active schedules in advance.

Scheduling by Priority Rules. Again, we face a conflict among the
schedulable operations in S. Only one operation can be chosen at a time and
this operation may delay other operations not yet scheduled. The dilemma is
obvious and well-known in other contexts too. We have to make a decision,
but this decision has an unknown future outcome. Most simple remedies are
rules of thumb known as priority rules in the context of scheduling. More
than 100 of such rules have been developed, we name just a few very popular
ones, listed in French (1982).

SPT Shortest processing time. Select an operation with a shortest pro-
cessing time among the operations in S.

FCFS  First come, first serve. Select an operation which has been in S for
the largest number of stages.

MWKR Most work remaining. Select an operation that belongs to the job
with the most processing time remaining among the not yet sched-
uled operations.

LWKR Least work remaining. Select an operation that belongs to the job
with the least processing time remaining.

The reasons for applying these rules follow from arguments of plausibil-
ity. As we see for e.g. MWKR and LWKR, rules may contradict each other.
Within the last decades a lot of research concerning priority rules has been
done, see Haupt (1989) for a survey. Priority rule based scheduling is com-
putationally fast, but the makespan improvement is generally still limited.
Nevertheless priority rules are important and sometimes the only available
procedures to fit the real time conditions of online scheduling.

2.3 Enumeration Methods

Let us consider an explicit enumeration of the search space. Starting from a
digraph D with no operations scheduled and setting the search depth to the
number of operations, we generate a complete enumeration tree. The leafs of
the tree represent all feasible solutions. The path from the root to a leaf of
minimal makespan represents an optimal solution. The remaining difficulty
is the size of the search tree generated. Since we have a maximum of (n!)™
solutions to consider, even moderately sized problems will keep any computer
busy for a time period in excess of centuries. As a remedy implicit as well as
partial enumeration methods have been proposed.
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2.3.1 Implicit Enumeration

Branch and Bound (B&B) algorithms cut branches from the enumeration
tree and therefore reduce the number of generated nodes substantially. B&B
algorithms rely on a lower bound LB and an upper bound UB of the objective
function value. The best solution generated so far determines the actual UB.
An LB is calculated for each node of the enumeration tree starting from the
root. A common way of generating nodes is the depth first search. The deeper
a node is placed in the tree, the more constraints are taken into account in
the resulting partial schedule. Only leaf nodes represent complete schedules
and therefore express exact objective values. Figure 2.12 illustrates such an
enumeration tree. Typically the LB calculated at a node becomes larger with
the depth level in the enumeration tree. If LB > UB becomes true, any deeper
search is senseless. Then, the part of the enumeration tree below the current
node is bounded from further search.

Stage 1

Stage 2
Fig. 2.12. A decision tree of
depth 3 is shown. The gray
Stage 3 nodes mark a single decision
chain within the tree.

A low UB known from the start will accelerate the search process since
branches are cut with respect to the present UB. Hence a good initial UB
is provided by means of a heuristic before the B&B search actually begins.
Furthermore, an appropriate branching procedure and a good LB calcula-
tion is needed. The branching procedure should follow promising nodes first,
whereas the LB calculation should come up with almost reliable bounds.

A survey on B&B methods for the JSP is given in Blazewicz et al. (1993).
The currently best B&B algorithm for the JSP has been developed by
Brucker et al. (1994), The branching- and bounding schemes are sketched
below as an example of B&B formulation for the JSP.

— The branching scheme is determined by longest path information. Brucker
et al. start at the root node with the graph D, such that only the conjunc-
tive arcs representing the technological constraints exist, compare Fig. 2.8.
At each node of the enumeration tree the longest path for the partial sched-
ule Dp is calculated.

A sequence of successive operations on the longest path to be processed on
the same machine is called a block. It can be shown that an improvement
may be gained by shifting an operation from the inside of a block to the first
or to the last position of this block. At each node of the enumeration tree
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two lists operations not yet scheduled is built. These lists contain candidate
operations to be inserted “before” and “after” a block. Now the branching
is performed by taking one operation of one of the two lists either in the
first or in the last position of a block.

— The bounding scheme is based on a lower bound evaluation for the partial

selection P. At each depth level [ of the enumeration tree one additional
machine constraint from the set £ is inserted to P. Since Dp = (V, AUP),
the technological constraints in A are always taken into account in Dp
regardless of the actual P considered. The lower bound LB is calculated
for Dp using a standard longest path algorithm like the one described in
Sect. 2.1.3.
A partial schedule is a relaxation of original problem due to two differ-
ent states for operations. Operations already sequenced contribute to the
makespan with their starting time. Operations not yet sequenced con-
tribute to the makespan with a conservative estimation of their expected
starting time. The search is bound, e.g. if the lower bound obtained for Dp
exceeds the currently best known solution (i.e. the upper bound).

Currently the use of B&B algorithms is limited to problem instances of
a few hundred operations. In an experiment the Brucker algorithm is run
for two problems listed in Chap 8. The B&B algorithm solves the 10 x 10
mt10 in about 20 minutes to optimality. Solving the 20x10 1a27 problem the
algorithm is interrupted after 20 000 minutes runtime and produces a result
which is still more than 10% above the optimum.

2.3.2 Partial Enumeration

The Shifting Bottleneck heuristic is based on a problem decomposition. It
has been proposed by Adams et al. (1988) and was the first heuristic able to
solve the notorious mt10 problem to optimality. The result obtained could
be proofed when Carlier and Pinson (1989) solved the problem with a B&B
algorithm.

Again, we start with the digraph D without any machine constraints
applied. In contradiction to techniques based on the framework in Fig. 2.9,
the Shifting Bottleneck algorithm iteratively adds entire machine selections
Hi(1 < i < m) to the partial schedule Dp. At any stage #(1 <t < m) a single
H; is added to P, hence Dy is built from D in m stages.

1. The partial schedule Dp includes all machines scheduled so far. In the
beginning of every stage the heads r, and tails ¢, are calculated for
all v € V in Dp. Heads and tails of this temporary partial schedule
indicate the makespan delay due to the constraints considered so far. In
other words, for every v two points in time r, and g, are specified. r,
denotes the earliest starting time and g, denotes the latest completion
time allowed for operation v with respect to the constraints in the current
Dp.
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2. For all machines not yet scheduled #; is obtained for &; by solving them
as one machine problems with heads r and tails gq. For each of these
subproblems an optimal machine sequence is found under the conditions
that an operation v cannot be started earlier than r, and v must be
completed until ¢,. This sub-problem is already NP-hard, but there is
an efficient B&B due to Carlier (1982) available.

3. In step 1 heads and tails for the one machine problem are calculated
with respect to the current Dp. Therefore each resulting Cpax value of
an optimized one machine problem defines a valid makespan for Dp plus
one additional machine sequence H;. The machine which worsens C,.x
at most is chosen to be scheduled next. This machine is called bottleneck
machine. Choosing the bottleneck machine is motivated by the conjecture
that scheduling M; at a later stage would worsen Cp,a.x even more.

The algorithm sketched above is named Shifting Bottleneck 1 (SB1). Its
name is derived from the fact that the bottleneck machine is scheduled in
step 3. This heuristic is based on the conjecture that an optimized iso-
lated machine sequence has a large number of arcs in common with the
optimal schedule. In order to obtain further improvements, local reopti-
mization cycles are applied after each insertion of a machine selection. The
scheme of selecting a machine for insertion and the reoptimization cycles
used have been subject to further refinements of the algorithm, compare e.g.
Applegate and Cook (1991).

The quality of the schedules obtained by SB1 heavily depends on the
order in which the one machine problems are solved and included into Dp, as
noted by Pesch (1994). Unfortunately, the results obtained by choosing the
bottleneck machine at each stage are not really convincing. Therefore Adams
et al. developed an enhanced version called Shifting Bottleneck 2 (SB2) which
engages selective enumeration also know as beam search in other contexts.

In SB2 a search tree analogous to Fig. 2.12 is generated. At each node a
set, of machine selections not yet scheduled is obtained by an SB1 stage. De-
pending on depth [ in the search tree, a number of successor nodes bounded
by min(l, [m'/?]) are generated. Again, the bottleneck criterion selects the
machines which worsen Cp,,x most. Instead of generating all possible succes-
sor nodes, SB2 relies on the bottleneck criterion and branches to the most
promising nodes only. This feature cuts down the horizontal expansion of the
search tree substantially.

Similar to B&B algorithms branches are bound by means of lower- and
upper bounds. Furthermore, the lower bound obtained for a partial schedule
is penalized by a value computed heuristically as a function of depth . The
more machines are included in the partial schedule, the less the lower bound
will be penalized and vice versa. Hence branches are bound at early stages. In
the remaining search tree a path from the root to a leaf of depth m determines
the order in which the optimized machine selections are added to D. Any path
of length m corresponds to a feasible solution, since all m machine sequences
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are scheduled. Nevertheless, SB2 is still a heuristic, i.e. even an optimal order
of sequencing machines does not necessarily lead to an optimal solution of
the problem considered. SB2 is a fast heuristic for moderately sized problems.
For these problems it comes up with excellent results.



3. Local Search Techniques

In recent research on combinatorics Local Search attracts increasingly at-
tention, since the practical use of exact enumeration methods is restricted to
problem sizes of a few hundred operations and most schedule generation tech-
niques produce only reasonable solution quality. Local Search offers further
improvements of solutions resulting from schedule generation heuristics.

Various Local Search algorithms have been developed sharing the basic
idea of neighborhoods. A neighboring solution is derived from its originator
solution by a predefined partial modification, called move. A move results in
a neighboring solution which differs only slightly from its originator solution.
We expect a neighboring solution to produce an objective value of similar
quality as its originator solution because they share a majority of solution
characteristics. One can say that a neighboring solution is within the vicinity
of its originator. Therefore we concentrate on search within neighborhoods,
since the chance to find an improved solution within a neighborhood is much
higher than in less correlated areas of the search space.

The most simple deterministic iterative improvement is described e.g. in
Vaessens et al. (1992). Starting from an initial (current) solution, the proce-
dure continually searches the neighborhood of the current solution for a neigh-
boring solution of better quality. Each time a neighboring solution gains an
objective value improvement, the current solution is replaced by its neighbor.
The procedure stops if no further improvement can be gained. The described
procedure is known as hill climbing in discrete optimization. It can loosely
be seen as the counterpart to gradient methods in continuous optimization.

Consider a multi modal objective function. A hill climbing procedure will
accept a replacement of the current solution by a neighboring one as long as
an improvement can be gained. The final solution is called a local optimum
with respect to the neighborhood used. To the contrary a global optimum
is a solution for which the objective value cannot be improved by any other
solution of the entire search space. The chance that a local optimum is also
a global optimum is very small for most difficult multi modal objective func-
tions. The advantage of having a good chance to improve the objective value
within a neighborhood comes along with the drawback of exploring only a
small portion of the search space.
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In order to avoid the short-come of getting trapped in a local optimum
several extensions of the basic hill climbing principle are proposed.

— Instead of generating a single neighboring solution an entire neighboring
set of solutions is generated. From this set the solution with the highest
gain is accepted to replace its originator. This method is known as steepest
descend strategy for minimization problems.

— A more intricate acceptance criterion can be used which allows a temporary
worsening of the objective value. Such a feature allows the search process to
escape from local optima. Examples for such methods are the well-known
Simulated Annealing or the Tabu Search algorithms (described later on in
Sect. 3.3.2 and 3.3.3).

The average solution quality obtained by Local Search strongly depends
on the neighborhood definition since the neighborhood definition affects the
number of local optima and their distribution in the search space. The search
space properties obey to the neighborhood definition applied. Thus, using
different neighborhoods leads to different appearances of the search space.

If there are only a few local optima present it’s not unlikely that Local
Search will run into a global optimum. On the other hand, if the search runs
into a local optimum, the chance to escape is very small even for methods us-
ing temporary deterioration. To the contrary, if there are many local optima,
hill climbing will perform poor and escape mechanisms are needed. If the
local optima are widely spread across the search space, escape mechanisms
will more likely fail as if the local optima are closely related.

In the following section we discuss several neighborhood definitions suit-
able for the JSP. Then different hill climbing strategies are introduced and
compared in terms of their efficiency (i.e. the relation of solution qual-
ity and runtime demand). Finally, the principles of Simulated Annealing,
Tabu Search and Variable Depth Search are sketched in terms of Local Search.

3.1 Neighborhood Definitions

The success of Local Search heavily depends on the properties of the neighbor-
hood definition used. Therefore we first describe what can be fundamentally
done in the JSP case in order to construct a neighboring move.

A basic move for the JSP is to rearrange the processing order of operations
to be processed on the same machine. In terms of the graph representation
introduced in Sect. 2.1.2 a move can be produced by permuting a Hamilto-
nian machine selection H; for machine M;. Thus, given a feasible schedule
Dy (or H as a shorthand) its neighborhood set AV(#) is obtained by slight
perturbations (or moves) from #.

Before we describe selected neighborhood definitions for the JSP, some
considerations on desirable features of neighborhoods are addressed.
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Correlation. A neighboring solution H’ should be highly correlated to its
originator H. Thus, a neighborhood N(#) of H should en-
sure a neighboring solution ' that differs only within a small
spread from H. This property takes care for a thorough ex-
ploration of the search space.

Feasibility. Perturbations should always lead to feasible solutions. If pos-
sible, the search should be restricted to the domain of feasi-
bility in order to avoid expensive repair procedures which in
turn would lead to further modifications of H'.

Improvement. A move should have a good chance to obtain an improved
f(H") value. In order to achieve this goal additional problem
specific knowledge may be incorporated into the neighborhood
definition.

Size. The average size of a set N'(H) should be within useful bounds.
A small number of possible moves may halt the search process
in early stages (at relatively poor local optima). To the oppo-
site, a large number of moves in A/ may be computationally
prohibitive if f itself is computationally expensive.

Connectivity. It should be guaranteed that there is a finite sequence of moves
(worsening ones included) leading from an arbitrary schedule
to a global optimal one. Otherwise, promising areas of the
search space may be excluded from the search. This is known
as the connectivity property.

Some of the above considerations may contradict each other. Often these
conflicts cannot be solved theoretically. At least some experience with appli-
cations is needed in order to develop appropriate neighborhood definitions.
Summing up, the features above are desirable properties which can be used
for developing efficient neighborhood definitions.

3.1.1 The First Neighborhood

Let us start with a somewhat naive neighborhood definition. Here, a move
is performed by changing the precedence relation of one operation to be
processed on machine M; arbitrarily within its machine sequence ;. Unfor-
tunately this neighborhood definition comes along with several drawbacks.
An arbitrary change of a machine sequence can lead to a cycle in Dy. Fur-
thermore, if each job has to be processed on each machine the neighborhood
is of size m(n — 1) and appears to be too large. A majority of feasible moves
in N(H) does not change or, even worse, deteriorate Ciyax-

These disadvantages can be avoided by restricting the moves to successive
operations as reported by Van Laarhoven et al. (1992). Since their neighbor-
hood definition meets a majority of desired features, a closer look on moves
within successive operations is given in Lemma 3.1.1 and 3.1.2.
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PM, P My

S M SMy

Fig. 3.1. Tllustration of neighborhood definition N/;.

Assume two successive operations v and w, (v,w € V) are given on a
critical path as shown on the left hand side of Fig. 3.1. Their heads r, and
ry are determined by the job predecessors P.J, and P.J,, and by the machine
predecessors PM, and v. Note, that the machine predecessor of w is v. The
tails ¢, and g, are determined by the job successors S.J, and S.J,, and by the
machine successors w and SM,,. These six adjacent operations are sufficient
to explain a move carried out between v and w. The situation after the move
is sketched on the right hand side of Fig. 3.1. Operation w has become the
machine predecessor of v by reversing the arc (v, w) to the arc (w, v). In order
to keep a Hamiltonian path in H;, two other machine sequence constraints
incident to v and w are adjusted to the new situation.

Lemma 3.1.1. Reversing one critical arc in H; cannot lead to a cycle in
Dy and therefore cannot result in an infeasible solution.

Proof. Assume a path which leads to a cycle after reversing (v, w). Such a
path is shown in Fig. 3.1 as a dashed curve from SJ, to PJ,. This path
would lead to a cycle after reversing (v, w) as shown in the right hand side of
the figure. Hence it has to be proved that the path from S.J, to P.J, cannot
exist if arc (v,w) is critical. All operations have a well defined processing
time p, > 0. If the arc (v, w) belongs to a critical path, then r,, = r, + p,
holds. Hence we can state that r, +p, +pss, +...+pps, > Ty +Dy. As long
as the arc (v, w) is critical, no other path from v to w can exist. Hence the
reversal of a critical arc (v, w) can never lead to an infeasible solution.

Lemma 3.1.2. If the reversal of a non-critical arc in H; leads to a feasible
solution, then f(H')>f(H) holds.

Proof. Obviously, reversing a non-critical arc does not affect the longest path.
Hence the derived solution cannot shorten the Cp,ax value of the new schedule.
Note, that Lemma 3.1.1 does not hold if the reversed arc is non-critical.
Reversing a non-critical arc may lead to an infeasible solution because of a
cycle introduced by the move.
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When moves are restricted to successive operations on a critical path
in Dp, feasibility of moves is preserved. Thus, the restricted neighborhood
definition proposed by Van Laarhoven et al. (1992) meets most of the de-
sirable features. An additional property reported by Matsuo et al. (1988) is
of interest for an even more efficient neighborhood definition, since further
non-improving moves are discarded from the neighborhood. This property is
formulated in Lemma 3.1.3.

Lemma 3.1.3. The reversal of a critical arc (v,w) can only lead to an im-
provement if at least one of PM, and SDM,, is non-critical.

Proof. If (PM,,v,w,SM,,) are successive operations on a critical path, a
reversal of (v,w) does not change the starting time rgas, because rpar, +
Py + Pw = Tsm,, - Therefore these cases cannot not lead to an improvement.
For an example refer to Fig. 3.1.

A machine sequence given in Lemma 3.1.3 is called a block. A block is
defined as a chain of successive operations on a critical path which are to be
processed on the same machine. An arc reversal of two successive operations
inside a block cannot shorten Cpax.

Even two more moves can be discarded from being considered due to
the following observation of Nowicki and Smutnicki (1995). Therefore we pay
attention to the first block succeeding node b and last block preceding node e.
A computational saving can be gained if one of the mentioned blocks consists
of at least two operations.

Lemma 3.1.4. Let v and w be the first two successive operations of the first
block. Reversing the critical arc (v,w) cannot lead to a makespan improve-
ment. Analogous let v and w be the last two successive operations of the last
block. Again, no improvement can be gained by reversing v, w.

The proof of lemma 3.1.4 is outside the scope of this thesis. Therefore
the interested reader is referred to Nowicki and Smutnicki (1995). Now the
foundations are laid for the definition of the first neighborhood N/ .

Definition 3.1.1 (N7). Given H, the neighborhood Ni(H) consist of all
schedules derived from H by reversing one arc (v,w) of the critical path with
v,w € H;. At least one of v and w is either the first or the last member of
a block. For the first block only v and w at the end of the block are consid-
ered whereas for the last block only v and w at the begin of the block must be

checked.

The neighborhood N is extremely small and leads to slight perturba-
tions only. It yields improved solutions with a relatively high probability and
guarantees feasibility. The connectivity property does not hold for this neigh-
borhood. For a counterexample refer to Dell’ Amico and Trubian (1993).
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3.1.2 The Second Neighborhood

A second neighborhood N5 is proposed by Dell’” Amico and Trubian (1993),
which can be used in conjunction with Aj. So far we looked at operations
placed at the border of blocks only. N3 takes precedence relations of opera-
tions inside a block into account. As stated in Lemma 3.1.3, the reversal of an
arc inside a block cannot yield an improvement of the makespan. Therefore
we focus on moves within a larger scope of operations.

Let operation v be a member of block b such that also PM, and SM,
belong to b = (b, v,b"). Solutions are considered as neighbors, if v is moved
to the first or last position in b. For these cases we get (v,b’,b") or (b, 0", v).
Actually such moves may lead to infeasible solutions. Since the operations
affected by the move are not adjacent, Lemma 3.1.1 cannot be applied. When-
ever a move to the first or the last position of a block leads to an infeasible
solution, we consider the move closest to the first or last position as neigh-
boring for which feasibility is preserved. In conjunction with N the benefits
of N5 are twofold:

— A new position for v in a block b may be found such that a move results
in an improved coverage of the machine capacity to which v belongs. This
can be seen as filling up a gap in the Gantt-Chart representation of the
problem.

— Moreover, moving v in the first or last position of its block may result in a
schedule for which V] allows a further shortage of the makespan in a next
step.

The feasibility of a solution resulting from a block move can be tested with
a standard labeling algorithm like the one described by Kahn (1962). Since
this procedure is computational expensive, Dell’ Amico and Trubian (1993)
give an estimation for testing feasibility of solutions resulting from moves in-
side a block. The estimation ensures the feasibility at the expense of omitting
a few feasible solutions. However, a standard labeling algorithm for each block
move candidate is computationally prohibitive. Furthermore Dell’Amico and
Trubian note, that only less promising moves are omitted by the estimation
procedure. The estimation of feasibility is given by Lemma 3.1.5 and 3.1.6
below.

Lemma 3.1.5. For a move inside block b = (b',v,b") closest to the first
operation w of b', a cycle in the resulting digraph can exist if and only if
there is a path from SJ,, to P.J,.

Proof. The path from SJ,, to PJ, cannot exist if rg5, + pss, > rps, holds
for each w € b’ considered. Assuming non-negative processing times, the
completion time of operation S.J,, must be later than the starting time of
operation P.J,. Thus, it is sufficient to test the inequality in order to ensure
feasibility. A graphical example is given on the left hand side of Fig. 3.2.
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Fig. 3.2. Tllustration of the neighborhood definition N5.

Lemma 3.1.6. For a move inside block b = (b',v,b") closest to the last
operation w of b, a cycle in the resulting digraph can exist if and only if
there is a path from SJ, to P.J,,.

Proof. The proof works similar to the one of Lemma 3.1.5. For each operation
w € b" the condition rg;, +psy, > Tpy, has to be satisfied in order to ensure
that a path from S.J, to P.J,, does not exist. Again we assume non-negative
processing times, thus the completion time of operation S.J, must be later
than the starting time of operation P.J,,. A graphical example is given on the
right hand side of Fig. 3.2.

Note that the estimation for the direct predecessor and successor of v in
Fig. 3.2 is not needed, since Lemma 3.1.1 already covers moves of successive
operations. Following Lemma 3.1.2, moves of successive operations inside a
block cannot lead to a shortage of the makespan anyway. Since feasibility is
preserved in other cases by Lemma 3.1.5 and 3.1.6, we can state the neigh-

borhood N as follows.

Definition 3.1.2 (N2). Let operation v be a member of block b such that
b= (b',v,b"). In a neighboring solution v is moved closest to the first or the
last operation of b for which feasibility is preserved.

Now the desired connectivity property holds for the union of the neigh-
borhoods N7 U As. Unfortunately, the neighborhood size now increases. Al-
though N5 contains promising moves, most neighbor candidates will not lead
to improvements. Hence the computational time needed in order to detect
improving solutions among the neighboring ones increases strongly. Recall,
that each improvement trial requires the calculation of a longest path. Ob-
viously, testing of the entire neighborhood seems computational prohibitive.
Nevertheless it would be most useful to gain further makespan improvements.
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3.1.3 Makespan Estimation

Since the exact calculation of the Ci,ax values for all solutions of a neighbor-
hood is computational prohibitive, Taillard (1993a) has developed a makespan
estimation for the N; neighborhood. Instead of comparing exact Crax val-
ues of neighboring solutions, Taillard uses estimated C!,,, values in his Tabu
Search algorithm. Using the proposed estimation, most non-improving moves
can be omitted at constant computational cost. Only for moves accepted by
the estimation the longest path is recalculated. Taillard’s work has been ex-
tended by Dell’ Amico and Trubian (1993) to a makespan estimation suitable
for the N5 definition. First, Taillard’s original estimation is described. Next,

Dell’Amico and Trubian’s extension is introduced.

N1 estimation. The calculation is based on the heads r, and tails g, of
a solution. Recall that a head gives the earliest starting time of an opera-
tion. The calculation of the heads is part of the procedure determining the
exact makespan, therefore no additional computational load arises. A tail g,
is defined by the longest path from v to the sink of the digraph. Roughly
speaking, the tail expresses the — not yet started — rest of the entire pro-
duction program from the viewpoint of the currently visited operation. The
tail calculation requires an additional longest path algorithm starting at the
graph’s sink with all arcs reversed temporarily.

As stated previously in Sect. 2.1.3, a head is given by r, = max(rpy, +
ppMm,,TPJ, + Ppy,) whereas a tail is calculated by ¢, = max(gsm, +
Psm,q4sy, + psg,) with p,,ry,q, = 0 for undefined v. No buffer time ex-
ists for any critical operation v, hence Chax = 7y + py + q,. We keep these
definitions in mind and recall the A illustration given in Fig. 3.1. Now we
calculate r!,,r! gl ,q., in a way as if the reversal of (v, w) has already taken
place.

r, = max(rpm, +Pppm,,TPI, +PPI,)
r, = max(ry, + pw,TPJs, +PPJ,)
q, = max(gsm, +Psm,qss, +Ps,) (3.1)
4, = max(q, + pv,qss, +DsJ,)
Crlnax = max(r;u + Puw + qzu: T;) +py + QL)

The estimated makespan C! . is given by the maximum makespan calculated
at v and w. The estimation is exact, if at least one of the operations w and
v belongs to a longest path after the reversal. Otherwise the estimated value

is a lower bound for the new makespan.

N> estimation. This more general approach offers an estimation also suit-
able for moves of non-successive operations within machine sequences. There-
fore we view Taillard’s (w,v) estimation as special case of an operation se-
quence of length 2. Let L = (L4, ..., L;) be a machine sequence of successive
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operations on a longest path as it will appear in a neighboring solution. Fur-
thermore let 'first’ and ’last’ be operations from L such that P Mg and
S M.t are non-critical or do not exist. These nodes determine a maximal
time span for the operations of sequence L. Therefore the operations ’first’
and ’last’ provide an embedding of L in the new graph. Since rg.st and qase
will not change from the originator solution to a neighboring one the estima-
tion of C! .. can be calculated similar to (3.1).

!
rp, = max(rpmg,., + PPMy. TP, T PPIL)
! _ !
ry, = max(ry, +pr.,TP., +PPIL,)
! _ !
T, = max(rhl,l +le—17TP-]Ll +pPJLl)
!
q, = max(qsm,. +PSM... 450, + Psig,)
! !
qL171 = maX(qu +p[11:qSJL171 +pSJr,171) (3 2)
] _ !
qu - max(ng +pL2;QSJL1 +pSJL1)
! ! ]
Cmax = 7'[11 +p[11 + qL]
1 _ ] ] ]
Cmax - max(cmax= T'L2 + pr, + qu)
] _ ] ! ]
Cmax - max(cmax= L, +pL, + qu)

We have defined a fast estimation procedure for sequences of operations
along a critical path which are processed on the same machine. Non im-
proving moves within a neighborhood can be discarded at almost constant
cost. Estimated makespan improvements are exact for most neighbors. The
remaining estimation failures are assumed to correlate with the exact cal-
culated makespan. I.e. we assume the deviation of the estimated makespan
between solutions to correlate with the deviation of the exact calculated
makespan although the values may differ.

3.1.4 The Third Neighborhood

In the following a third neighborhood definition is described, also proposed
by Dell’” Amico and Trubian (1993). Its goal is to extend N by taking the
reversal of two arcs of one move into account. In certain cases a slight per-
turbation by reversing only one arc (v,w) does not yield an improvement,
whereas a stronger perturbation by reversing two arcs simultaneously may
succeed. These cases are addressed by the neighborhood definition N3.

Definition 3.1.3 (N3). Let v and w be successive operations on a longest
path. All possible permutations of {PM,,v,w} or {v,w,SM,} are considered
as neighboring if v and w are reversed also.
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Table 3.1. Depending on a block’s structure up to three permutations are regarded
to be neighboring. If two precedence relations are changed, a conflicting path may
lead to a cycle in the resulting digraph.

block structure small block  block begin block end
(v, w) (v, w, SMy,) (PMy,v,w)
permutations {w,v} {w,v} {w,v}

{w, SM, v} {w, PM,,v}
{SMw,’l,U,’U} {w7U7PMU}
conflicting path — (S4y,PJsm,) (STpm,,PJy)

v

Depending on the block structure of the machine sequence three cases can
be distinguished as shown in Tab. 3.1. The cases are denoted 'small block’,
"block begin’ and ’block end’. Note that a makespan improvement is pos-
sible only if one of PM, and SM, belongs to the longest path, compare
Lemma 3.1.3. Thus, depending on the block structure at most three permu-
tations are taken into consideration for a neighboring candidate. The possible
permutations are illustrated in Fig. 3.3. The first graph shows a machine se-
quence as it appears in the digraph of the originator solution. The nodes u’
and u" represent further operations of the machine sequence which are not
considered in this context. The gray nodes represent the part of the sequence
where the N3 move takes place.

P M,

S Moy,

,ull

Fig. 3.3. Illustration of neighborhood definition A3.

For simplicity the job predecessors and job successors are omitted in
Fig. 3.3. For the same reason conflicting paths are omitted from the fig-
ure. Nevertheless a second path may exist from PM, to w or from v to SM,,
in the machine sequence of the originator solution. Such a path will lead to
a cycle when applying the permutations given in Tab. 3.1. Again, a labeling
algorithm to detect a cycle can be avoided by evaluating the permutations
considered in a certain order.
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Lemma 3.1.7. The estimated makespan of a (v,w) reversal is smaller or
equal than any estimated makespan resulting from the reversal or two arcs if
such a reversal leads to an infeasible solution.

The proof of Lemma 3.1.7 is outside the scope of this thesis, the interested
reader is referred to Dell’” Amico and Trubian (1993). Following Lemma 3.1.7
a cycle in the resulting neighboring solution can be easily avoided by taking
always the permutation with the smallest estimated makespan as the neigh-
boring solution. If a (v, w) reversal and a more complicated reversal produce
the same estimated makespan values, take the (v, w) candidate as the neigh-
boring solution. The considerations above imply that only one candidate is
regarded as a neighbor. Note, that it is impossible to calculate the makespan
for an infeasible solution. Using the estimation introduced in (3.2) the C ..
of an infeasible solution is estimated by neglecting a possible cycle. Hence all
estimations required for an N3 evaluation are directly comparable.

Three neighborhood definitions Ni, N> and N3 have been presented so
far with N7 C A3 and N5 N N3 = (. Hence A may be used in conjunction
with A3 in order to obtain an advanced neighborhood definition combining
the advantages of N5 and Ns.

Definition 3.1.4 (Ny). Ny = Ao UN;.

We have seen that the definition of an efficient neighborhood is highly
problem dependent and might be more difficult than Local Search literature
implies. In this section four neighborhood definitions have been presented.
They will be used throughout this thesis, first within Local Search algorithms
and later on as a component of Evolutionary Search.

Other even more complex neighborhood definitions exist, compare e.g.
Balas and Vazacopoulos (1994). Obviously, there is an efficiency tradeoff be-
tween the makespan improvement gained and the size of the neighborhood
defined. We can finally decide whether a neighborhood definition fits the
needs only in combination with the control structure of the heuristic search
technique in which the neighborhood definition is embedded.

3.2 Local Hill Climbing

Hill climbing procedures iteratively perturb a solution by slight moves which
improve the objective pursued (i.e. minimize the makespan). Before we are
going to take a closer look at the properties of hill climbing for the JSP, we
discuss an efficient way of implementing a neighborhood move.

Then different control structures which navigate the search are first de-
scribed and then are used in combination with the neighborhoods defined
throughout the previous section. Finally, the resulting strategies are applied
to three arbitrarily selected benchmark problems. Some experiments carried
out give us a qualitative impression of results we can expect from hill climbing
for the JSP.
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3.2.1 Applying a Neighborhood Move

After selecting H' from A (#H) as a neighboring candidate due to estima-
tion (see Sect. 3.1.3), the new digraph Dp is established (i.e. the move is
performed). Next, the topological sorting 7' for #H' is achieved, compare
Sect. 2.1.3. Based on 7' the heads r, € V are calculated in order to deter-
mine the new exact C} ., value. Anytime the estimation has failed in a way
that f(#H') > f(H) holds, we cancel the move and continue with choosing a
next appropriate candidate (if any) from N(H). The critical path and the
tails g, € V are calculated only if the move candidate #H' is finally accepted
to replace H.

An entirely new calculation of the makespan as described in Sect. 2.1.3
requires a considerable computational effort. Therefore we face a strong de-
mand for a fast recalculation procedure for the makespan of a neighboring
solution. A slight perturbation of a solution # results in its neighboring so-
lution H'. These two neighboring solutions show a high similarity concerning
their topological sorted nodes V. We benefit from this similarity when calcu-
lating the makespan of a neighboring solution #'.

Performing a Move. A simple move concerning v, w € V as considered in
Ni and N, (see Definitions 3.1.1 and 3.1.2) can be expressed by the instruc-
tion: “schedule w prior to v”. The implementation of a move instruction con-
sists of the six statements shown in Fig. 3.4. Note that PM,,, PM,, and SM,,
refer to the situation in Dy before any action has taken place. More com-
plex moves as considered in A3 (see Definition 3.1.3) can be expressed by
two instructions carried out subsequently. For instance, an inversion of the
sequence (u,v,w) can be obtained by the instructions 1) schedule v prior to
u, and 2) schedule w prior to v.

(1) if PM, delete arc (PM,,v) X

(2) if SM,, delete arc (w, SM,) Fig. 3.4. Steps to be per-
(3) if PM,, delete arc (PM,,,w) for(lined 13.ordelr tg sfchedule
(4) if PMy, A SM,, construct arc (PM,,, SM,) node w directly before v.
(5) if PM, construct arc (PM,,w)

(6)  construct arc (w,v)

Achieving a Topological Sorting. We obtain the neighboring solution H’
from H by performing a move as shown in Fig. 3.4. Now we establish a new
topological sorting 7' for Dy . Since the nodes v, w affected by a single move
are closely related in Dy, typically we will find them in a proximity within the
old topological sorting 7. Therefore we keep most of the topological sorting
previously done for Dy and obtain 7' by adjusting 7 locally. We define
B, w C T such that v is the first and w is the last node in B. A move of v
and w affects the sorting of nodes in B exclusively, the topological sorting of
nodes in A and C are not involved. The situation is sketched in Fig. 3.5.
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/—L Fig. 3.5. A single move
A H v | X | w H C ‘ rearranges the nodes in B.
‘7f

Now let us consider the nodes in X = B\{v,w}, whose position obey to
one of three distinct reasons.

1) A node in X occurs prior to w as a direct or indirect predecessor of w.
2) A node in X occurs after v as a direct or indirect successor of v.
3) A node in X is locally unrelated to v and w.

In D node w is scheduled as a direct predecessor of node v. In order to
achieve an identical order in 7' we place w directly before v. Therefore we
distinguish between 1) and 2) and split X into X' and X" respectively. Nodes
which obey to case 3) may occur arbitrarily in X’ or X" because the nodes
in X are no successors of v or predecessors of w.

B/
—_— Fig. 3.6. B' is a valid
A H X' | w | v | X" C sorting for the graph Dy .
e

In order to set up X' and X" we label the nodes in X which are direct
or indirect predecessors of w in Dg. The labeled nodes form X'. The nodes
not labeled are either successors of v or unrelated to v and w forming X". A
valid topological sorting for the new digraph Dy is given by 7' = (A, B', C).

Figure 3.7 provides an example for the described procedure. The move
considered schedules node 9 prior to 1. A valid topological sorting for the
digraph Dy is T = (0,4,1,7,2,5,8,3,9,6,10) shown on the left side of the
Fig. 3.7. We identify node 1 and 9 in 7 and extract B = (1,7,2,5,8,3,9).
In a next step we label node 7 and 8 as direct or indirect predecessors of
node 9, illustrated by B = ((1],7,2,5,8,3,[9)) with labeled nodes underlined
and nodes involved in the moved surrounded by boxes. Since we move node
9 directly before node 1, we have to move the nodes 7 and 8 before the
new position of node 9 also. We end up with B' = (7,8, @, , 2,5,3) and
T'=1(0,4,7,8,9,1,2,5,3,6,10) which is a topological sorting for the digraph
Dy shown on the right hand side of Fig. 3.7.

Fig. 3.7. Selection
H;, = (1,5,9) of ma-
chine M; is changed
to H; = (9,1,5).
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For this small example the number of nodes in B is larger than the num-
ber of nodes in 7 N B. The smaller B is compared to 7, the more savings
will be gained from the suggested procedure. In order to give a quantitative
impression of the average number of nodes in B in percent of nodes in 7, a
small experiment is carried out. The mean results of 1000 runs are shown in
Tab. 3.2 for three arbitrarily selected problems listed in Chap. 8.

name size A B C .

mtl0 10X 10 154 59 487  Lable 3.2. Nodes in 4, B and C
1227 20 % 10 478 50 479 given in % of the no. of nodes in 7.
la35 30x10 46.9 4.5 485

B consists of approximately 5% of the nodes in 7. In other words, 95% of
all nodes are left, untouched by restricting the recalculation of the topological
sorting to B. For larger problem instance we expect even greater savings.

Recalculating Heads and Tails. Based on 7' the new heads and tails can
be calculated efficiently. In average, B is embedded in 7 such that roughly
47% of nodes are members of A and another 47% of nodes are members of
C. The number of nodes observed are shown in percent of nodes in 7 in
Tab. 3.2. For the recalculation of the heads r, we consider only the nodes
v € {B"U C}, because the nodes in A are left unchanged. In turn, we re-
calculate the tails ¢, for nodes v € {B' U A} only because nodes in C are
left without modifications. Thus, we save roughly half of the computational
amount needed for a recalculation of r, and g,. The new critical path in Dy
is unpredictable and therefore needs a completely new determination.

3.2.2 A Hill Climbing Framework

The neighborhood definition A/ and the navigation control C, which selects a
move candidate from N, are parameters to a general hill climbing framework.
A neighborhood N and a control C together define a search strategy.

Establish a solution H by a schedule generation technique.

Generate a set of neighborhood solutions R := N (H) for solution H.
Discard the non improving solutions from R by applying f(H'), H' € R.
If R # 0, replace H by choosing H' from R subject to C and goto 2.

5. Terminate.

=

Fig. 3.8. Framework for a hill climbing procedure.

Figure 3.8 shows the framework of a local hill climbing procedure. Apply-
ing N to a solution H will result in the set of neighboring solutions N (H).
The search control C selects a move to be carried out. In general, hill climb-
ing is an irrevocable search method, because we are not permitted to shift
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attention back to previously suspended moves, see Pearl (1984). The search

control is of particular importance to the success offered by hill climbing. In
accordance with the literature we define three controls shown in Tab. 3.3.

Table 3.3. Three hill climbing control strategies.

strategy abbr. description

next (nx)  The first improving neighbor found replaces H.
steepest  (st) The best of all improving neighbors replaces H.
random  (rn) A randomly chosen improving neighbor replaces H.

Before we start an experimental investigation, we discuss what can be
expected from neighborhoods and search controls within a hill climbing pro-
cedure for the JSP. We consider the neighborhood definitions N7 C Nz C Ny
defined previously in this chapter!. We first argue, that the more effort we
spend in setting up a neighborhood set, the more profit we expect to gain
from a hill climbing procedure. Thus we expect the makespan improvements
due to Ny to be superior to N3 which in turn should be of better quality
than the improvements gained from A;. Of course, a higher effort is com-
putationally more expensive. But is a better result worthwhile the longer
computation time invested? Or can we neglect further limited improvement
due to a more intricate neighborhood definition in order to obtain a fast hill
climbing procedure?

The relation between the C,x, Cs; and C,,, control is not clear from the ad-
vance. Intuitively, one would expect Cs; to make larger steps of improvement
than C,. But will the latter control reach a similar solution quality compared
with the former one?

In the context of scheduling C,x has a special behavior. The operations
along the critical path of Dy are successively investigated for improvements
from the source to the sink. Thus the next descendant control C,x always
selects the move closest to the source of Dy . Since the critical path changes
after a move has taken place, another operation close to the source will be in-
vestigated in a next step. Cpx respects the temporal order of operations given
by the technological constraints. Hence a thorough search can be expected,
which rearranges operations with respect to the processing order of the jobs
involved. In this way a hill climbing strategy using A; works somewhat like
the simple schedule generation techniques described in Sect. 2.2.1.

We conjecture that the results obtained from hill climbing depend on
the characteristics (e.g. the problem size and the relation of n and m) of a
JSP instance. We do not claim that general conclusions can be drawn from
the results presented in the next section. However, comparisons with other
benchmark problems carried out by sample come up with similar results.

! Recall, that A is part of Ay but does not appear solely in the following. Thus,
only the neighborhood definitions N1, N3 and N4 are subject to the investigation.



42 3. Local Search Techniques

3.2.3 Comparing Search Strategies

We pick three test problems from the benchmark suites described in Chap. 8.
The mt10 is chosen as a small (10 x 10) but hard problem. The medium
sized 1a27 (20x 10) is also known to be hard to solve. The 1a35 (30x 10) is
considerably larger but quite easy to solve. For these problems hill climbers
using all pairs resulting from the product of N’ x C are run 1000 times each.
We present the results obtained in Tab. 3.4, 3.5 and 3.6.

Table 3.4 shows the relative error calculated by 100(mean — opt)/opt
where 'mean’ denotes the mean result obtained from 1000 trials and ’opt’
denotes the problem’s optimum. In the first column the relative error of 1 000
randomly generated solutions is shown in parenthesis.

It can be clearly seen, that A, dominates Az which in turn dominates A,
for all strategies and all problems. C,x is expected to perform best from the
considerations on page 41. But for larger problems the benefit decreases and
almost vanishes for the 1a35 problem. Additional experiments (not shown)
with much larger problems (100x20) have resulted in a clear advantage of the
Cst, control compared to Cnx (26.3% to 33.89% relative error). Cnx seems to be
superior only for small and/or quadratic (n = m) problems. Strategies which
use Cg¢ or Cpy control generally perform better than C.,. It is noticeable, that
the quality of randomly generated solutions (given in parenthesis in the first
column of Tab. 3.4) differ significantly for the three problems considered, and
so do hill climbing results.

Table 3.5 shows the average number of moves performed in a single hill
climb. Strategies which use N or N3 perform roughly the same number of
moves, whereas the number of moves increases for the N neighborhood.
For larger problems more moves are performed than for smaller ones. Hill
climbing strategies using the Cpx control perform about twice the number of
moves compared to Cg for all A considered. The C,,, control performs slightly
more moves compared to the Cg, but the latter produces better results as
we have seen from Tab. 3.4. Recall from (3.2) that the estimated makespan
is calculated at almost constant cost. In contradiction, a move requires two
longest path calculations. Hence a large number of estimations in combination

problem  control neighborhood
1 3 4
mt10 next 326 274 254 Table 3.4. The average makespan
(84.2) steepest 36.2 304 27.8 found by different hill climb stra-
random 36.3 31.0 28.5 tegies is given in terms of the rela-
1a27 next 372 311 277 tive error.

(95.7) steepest 40.8 33.0 284
random 409 34.3 31.2
la35 next 31.5 267 214
(74.2) steepest 33.6 27.2 21.6
random 33.5 286 244
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problem  control neighborhood
1 3 4
mt10 next 28.1 279 33.7 Table 3.5. The average number of
steepest 16.2 15.1 16.9 moves performed until a local opti-
random 20.3 19.0 22.3 mum is reached, shown for different
1a27 next 55.0 59.1 79.1 hill climbing strategies.

steepest 30.2 31.1 34.6
random 36.5 36.9 45.5
1la35 next 60.9 66.7 98.9
steepest 34.2 34.1 40.5
random 38.9 40.2 52.6

with a small number of moves as used by Cg will outperform Cpx for larger
problems.

The runtime performance of hill climbing is given in Tab. 3.6. The mean
CPU time a single climb requires is shown in milliseconds. As expected,
strategies using the A neighborhood are faster than strategies using Az and
(even more clearly) the A, neighborhood. While the runtime performance
for strategies using N; or N3 scale up moderately with the problem size,
strategies using Ny take about 0.4 sec. for a single run for the 30x 10 sized
problem. The Cg; outperforms both other strategies for larger problems.

Note that control strategies using A; would not perform that worse for
large quadratic problems. Recall that N, is defined as N3 UN3. Hence the dra-
matic increase of runtime for Ny in Tab. 3.6 is due to N3. This neighborhood
definition searches within whole blocks, whereas strategies using N3 searches
at the “begin” and “end” of a block only. The fewer blocks a longest path
contains, the more time will be spent for A5 and vice versa. For example,
a longest path of a quadratic 10 x 10 problem will consist of shorter blocks
than a rectangular 20 x 5 problem. Additionally, the longest path itself will
be shorter for quadratic problems compared with rectangular ones. Hence for
large rectangular problems A, does not appear appropriate.

Summarizing, the advantage of the Ny neighborhood is evident in terms
of makespan improvements. Concerning the search control Cg and C,x the
results obtained are almost similar in terms of makespan. In terms of runtime

problem  control neighborhood
1 3 4
mt10 next 9.7 16.3 31.8 Table 3.6. Average CPU time in
steepest 7.9 16.8 31.9 milliseconds needed for a single
random 9.9 214 38.9 run, shown for different hill climb-
1a27 next 37.7 491 1076 ing strategies.

steepest 24.7 46.2 108.1
random 29.6 55.9 129.1
la35 next 65.3 85.1 428.1
steepest  41.0 67.9 390.0
random 49.6 78.8 423.5
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performance Cg is clearly superior to C,x. Hence the most effective strategy
is to use NV in connection with Cy. However, we should note the tradeoff be-
tween the results obtained and the runtime required. Whenever hill climbing
is used in combination with an intricate control strategy of a heuristic guid-
ance technique, we should examine whether the quality of solutions generated
by N3 is sufficient in order to obtain an efficient algorithm.

3.3 Local Search Extensions

Local Search methods suffer from getting stuck in local optima. In this
section Local Search techniques capable of escaping from local optima are
described. Before we turn to Simulated Annealing, Tabu Search and Vari-
able Depth Search, we first sketch Iterated Search as a most simple hill
climbing extension.

3.3.1 Iterated Search

A simple approach of enhancing hill climbing is Iterated Search. As long as
time is available start the best known hill climber from randomly generated
solutions and store the best solution found so far. Neither the variance nor
the best makespan of the solutions generated in the experiments of the last
section are reported. Since the variance is quite high, some apparently good
solutions were found during the 1000 iterations. For the mt10 problem a
makespan of 994 was found which is quite an impressive result even for more
sophisticated heuristics. It was found by the C,yx control in combination with
the Ny neighborhood. Recall from Tab. 3.6 that 1000 runs just take about 30
seconds. Thus, if a problem is difficult to optimize by any method, iterated
search is a serious alternative.

However, iterated search does not use information of former iterations in
later trials. The usage of information of former trials in order to guide further
search is subject of the techniques described in the following.

3.3.2 Simulated Annealing

Simulated Annealing was invented independently by Kirkpatrick et al. (1983)
and by Cerny (1985). The search process can be viewed in analogy to the
cooling of a solid to its ground state. In physics a ground state is the state
of the smallest energy level. The annealing process begins with a solid in a
melted state and then gradually lowers its temperature.

In combinatorics the ground state is a (hopefully global) optimum. Start-
ing from a random solution (melted state) non-improving moves are accepted
with a relatively high probability which is gradually decreased over time. The
cooling process is controlled by the temperature cooling parameter c.
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Over the runtime of the algorithm ¢ decreases continuously from the ini-
tial state 1 towards O in each iteration k. The lower ¢ falls, the smaller the
degree of deterioration allowed between f(H) and f(H'),H' € N(H) be-
comes. Typically the most improving move within a neighborhood is selected
as the H' candidate. The solution H is replaced by a selected neighboring
solution H' with the probability p(k).

U0~ 7)) .

Ck

otk = min { 1,50

For improving moves the acceptance probability p is 1. For worsening
moves, i.e. f(H) < f(H'), p(k) determines if the move is accepted. Since ¢
is lowered in each iteration k, the probability of accepting worsening moves
is decreased exponentially over the runtime. The general idea of Simulated
Annealing is to guide the search into promising areas of the search space in
early stages while doing refinements in later stages.

At least two successful implementations for the JSP are reported in liter-
ature by Matsuo et al. (1988) and Van Laarhoven et al. (1992). The former
uses a much more sophisticated neighborhood definition, whereas the latter
uses a slower cooling procedure. Both publications present results of similar
quality when comparable runtime is supposed.

A recent paper by Aarts et al. (1994) compares several Local Search tech-
niques under the aspect of constant runtime. Simulated Annealing outper-
forms most other techniques, when time is of no concern. It took 2 to 15
hours runtime in order to solve the benchmarks listed in Tab. 8.10. However,
15 hours for problems with at most 300 operations seems a lot of time re-
gardless of the implementation environment. These results are in accordance
with Van Laarhoven et al. (1992).

This shortcoming might be due to the fact that Simulated Annealing uses
no memory (apart from the current solution and the parameter ¢) about areas
of the search space which have already been visited. Threshold Acceptance (a
deterministic variant of Simulated Annealing) has been introduced by Dueck
and Scheuer 1991. Aarts et al. (1994) present a JSP implementation of this
technique, but obtain poorer results than the ones obtained by Simulated
Annealing. The shortcoming described above for Simulated Annealing is at
least also true for Threshold Acceptance.

3.3.3 Tabu Search

Tabu search was invented by Glover and Hansen independently in the eighties.
An excellent survey is given in two parts by Glover (1989), Glover (1990) and
in Glover and Laguna (1993). Similar to Simulated Annealing Tabu Search
modifies one solution by means of a neighborhood definition A. Typically the
most improving move in V() is selected as the H' candidate. If no improving
move is contained in A (#), the least worsening one is selected. Therefore
Hansen called his technique: “Steepest descending, mildest ascending”.
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The link of modern heuristics to Artificial Intelligence is emphasized by
Glover and Greenberg (1989). They state that the even most skilled ’expert
knowledge’ can sometimes make disastrous decisions in face of the combina-
torial explosion. Therefore a framework is needed which guides the use of skill
and knowledge in a flexible way. In this way Tabu Search guides the search
process to explore new regions of the search space. Unlike Simulated Anneal-
ing, an explicit memory of recent moves is kept and evaluated later on for the
choice of subsequent moves. Note that keeping moves in memory is not as
restrictive as keeping a memory of solutions or parts there of. Not particular
points of the search space, but subsets of the path into these points are kept
in memory. Glover distinguishes between short- and long term memory.

Short term memory consists of the last & moves. Typically the short term
memory is implemented as a list, called tabu list. Each time a move is
performed, it is stored at the front end of the tabu list. At the same time
the k’th entry of the list is discarded. If a selected move is part of the
tabu list, this move is temporarily forbidden (or tabu in the notion of
Tabu Search). This mechanism helps to prevent cycles in move sequences
after a deterioration of the objective function value has taken place.

Long term memory consists of a data structure keeping track of all moves
performed so far. Each time a move is carried out, an annotated counter
is increased. The value of the move counter is the basis for a penalty
function. The more a move has already be carried out in the past, the
more this candidate is punished. In the long run this penalty avoids search
of areas which already have been explored. Hence the search is directed
into potentially unexplored regions of the search space.

Under certain circumstances the memory may prevent some substantial
improvements because it currently forbids a potential good move. Therefore
an aspiration criterion is introduced, which temporarily disables the memory
function. A useful aspiration criterion is to allow a tabu move if an improve-
ment, beyond the best solution found so far can be achieved.

Tabu Search has been applied to a wide range of combinatorial problems.
The technique seems to be generally well suited for highly constrained prob-
lems which allow a neighborhood definition. Various Tabu Search approaches
for the JSP have been proposed. All implementations keep arcs inversions in
a tabu list and use the makespan as a measure of improvement.

A basic implementation using an N like neighborhood definition is de-
scribed by Taillard (1993a). Dell’ Amico and Trubian (1993) extend his ideas
leading to the neighborhood definition Nj. Both approaches use makespan
estimations for selecting the most improving neighboring move. Recently,
Barnes and Chambers (1995) propose to calculate the exact makespan for
an extremely small neighborhood definition. They obtain even better results
compared with the former ones, which gives a hint on the possible misleading
effect of makespan estimations for the algorithm’s control structure.
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A further approach of Hurink et al. (1994) concentrates on multi-purpose
machine problems. The problems considered in this thesis can be seen as
a specialized case there of. Hurink et al. use the A5 neighborhood (if only
single-purpose machines are considered).

Apart from the neighborhood definition used, the approaches differ in the
way of generating a good starting solution. Obviously, the properties of tabu
search to exploit a portion of the search space are excellent. To the contrary,
the properties to explore promising areas in a search space are limited since
Local Search techniques generally tend to get trapped in a region around some
local optimum. Therefore a good schedule generation technique (compare
Sect. 2.2) is needed in order to set up a promising point in the search space
from which Tabu Search can continue efficiently.

Another crucial aspect of Tabu Search is the maintenance of the tabu
list. Advanced features like variable tabu list length or cycle detection mech-
anisms are needed in order to prevent cycling through a number of neighbor-
ing solutions. Barnes and Chambers (1995) simply discard the tabu list if no
permissible move exists anymore in order to escape from local optima.

The currently best approach of Nowicki and Smutnicki (1995) uses the
simple A7 neighborhood. Nowicki and Smutnicki gain even better results by
controlling the Tabu Search with backtracking. In their approach a search
tree is generated by adding a node (representing a solution) every time a
new best solution is found. For each neighboring solution of such a node a
limited Tabu Search is branched. The various search trajectories may generate
further nodes themselves if they gain an improvement of the makespan. For
some large and difficult benchmarks Nowicki and Smutnicki obtain the best
known results although only short run times were needed.

Summing up, the various approaches can be classified by the neighborhood
definition used and the way of maintaining the tabu list. Either a simple
neighborhood definition and an intricate tabu list management is used or,
the other way round, an intricate neighborhood definition is engaged by using
a simple list management. Generally, the Tabu Search approaches described
produce excellent results in a reasonable runtime.

3.3.4 Variable Depth Search

Variable Depth Search is due to Lin and Kernighan (1973) who applied this
technique to the TSP. Variable Depth Search typically runs for a number of
iterations starting from an initial solution. Each iteration performs a fixed
number of neighborhood moves (worsening ones included). Thereby a move
once carried out cannot be reversed by subsequent moves performed. Hence,
different to Tabu Search, the list of forbidden moves grows dynamically within
a Variable Depth Search iteration. At the end of an iteration the ’forbidden
move’ list is emptied and the best solution found is taken as the starting
solution of the next iteration.
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An implementation of a Variable Depth Search Procedure for the JSP is
reported by Dorndorf and Pesch (1993). They incorporate a Variable Depth
Search procedure in a Genetic Algorithm. Starting from a solution assembled
by the Genetic Algorithm, the procedure performs Variable Depth search
iterations. Each iteration carries out a number of irrevocable A; moves. The
procedure stops if no further improvements can be gained and returns the
local optimal solution obtained to the Genetic Algorithm.

Recently, Balas and Vazacopoulos (1994) have proposed a Variable Depth
Search Procedure for the JSP under the name Guided Local Search (GLS).
Starting from an initial solution obtained by a priority rule based sched-
ule generation technique, GLS performs a neighborhood search guided by a
search tree. A node of the search tree corresponds to an originator solution
for which sibling nodes are generated by means of neighboring moves. Again,
a move carried out remains fixed for all of its siblings. The depth of this tree
is restricted by a logarithmic function of the number of operations involved.
The width of the search tree is limited to a small number of siblings which
are ranked according to their makespan achieved.

The GLS is incorporated in the Shifting Bottleneck algorithm (compare
Sect. 2.3.2) leading to the SB-GLS algorithm. Here, the partial schedule al-
ready built by the Bottleneck procedure is re-optimized by GLS. The reader
is referred to the original article for several variants of SB-GLS and a de-
tailed description of the neighborhood definition used. Currently a variant of
this approach is the most effective one for solving the JSP. A comprehensive
survey and up to date results of recent Local Search approaches are given in
Vaessens et al. (1995).
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One way of searching in a large space is to pick solutions at random. This
is an aimless approach unless the samples picked are used to guide further
search. This is the basic principle of Evolutionary Algorithms (EA) which
are introduced in this chapter. EA’s maintain a whole family of solutions in
parallel. The various solutions of this family can be seen as samples of the
search space. They compete and cooperate through a number of iterations in
order to gain improvements.

4.1 The Evolutionary Metaphor

EAs mimic the process of evolution as it was stated by Darwin (1809-1882)
in the late 19’th century. The analogy to natural phenomena is best carried
out by way of metaphor. Therefore we introduce the basic concept of EA’s
in terms of evolutionary genetics, see Smith (1989).

“Due to Darwin, individuals with characteristics most favorable for
survival and reproduction will not only have more offspring, but they
will also pass their characteristics on to those offspring. This phe-
nomenon is known as natural selection.”

An individual’s characteristics may be advantageously compared to the char-
acteristics of other individuals of the species. These advantages are a relative
measure called fitness. The fitness of an individual depends on how its char-
acteristics match the environmental requirements. Since we assume the same
global environment for all individuals, the species slowly evolves towards in-
dividuals of higher fitness by means of natural selection. In this way selection
predicts the adaptation of individuals to their environment. The individual’s
fitness is determined by its acquired characteristics, called its phenotype. The
phenotype itself is determined by the individual’s genetic prerequisites, called
its genotype. Only genotypical information is inherited to offspring. Hence
we understand an evolutionary process of a species as a continuous change of
genetic material over time. Since EA’s are inspired by nature, the lingo used
in the following is taken from biology.
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4.1.1 Evolutionary Strategies

Some of the EA pioneers were Rechenberg (1973) and Schwefel (1975). They
introduced Evolutionary Strategies (ES) for continuous optimization prob-
lems in engineering. A survey on ES is given in Béack et al. (1991) and in
Hoffmeister and Béck (1990).

The goal is to optimize a function in a vector of continuous variables
towards some criterion, e.g. the function’s maximum. A solution to a problem
is a vector of values within prescribed domain bounds. Such a solution is
called individual. The objective function plays the role of the environment.
Thus we can measure an individual’s fitness by its objective value.

A population consists of a finite number of individuals. In the beginning
the population is initialized with arbitrary arguments. The algorithm runs for
a certain number of iterations which are called generations in the context of
EA’s. In each generation a number of offspring is generated by means of some
mutation operator which alters the solutions of the individuals slightly. Next
the fitness is obtained for the newly generated individuals. Now the popula-
tion of the next generation is obtained by means of some selection operator.
It selects preferably individuals with above average fitness to form the new
population. Given the number of parents g and the number of offspring A
with A>pu, we distinguish the (i, A) and the (u+ A) strategy. The population
size is fixed to p over the number of generations. In the (u,A) strategy the
new population is formed by the u best offspring only, whereas in the (u+ A)
strategy the next population is selected from the parents and the offspring.
The former strategy forces a further exploration of the search space whereas
the latter strategy tends to preserve the solutions found so far.

We call an adaptation process due to mutation asexual reproduction,
because no information interchange between individuals occurs. In the be-
ginning strong mutations are needed in order to explore larger regions of
the search space. From generation to generation the mutation step size is
decreased in order to do refinements in later stages. Schwefel made the muta-
tion step size itself to an object of evolution. ES require a mutation operator
which respects the domain bounds of the real valued argument. The mu-
tation operator must be “sizable” such that the degree of change can be
continuously decreased over the generations. Such a mutation operator can
be defined easily for continuous problems, but it can hardly be modified to
fit the needs of combinatorics sufficiently well. Herdy (1990) presents an ES
approach for the Traveling Salesman Problem (TSP), although his approach
lacks generality in order to be applied to other combinatorial problems.

Evolutionary progress of a population is due to the progress of single
individuals. The mutation step can be seen as taking samples from the search
space while the selection step directs the search towards the most promising
samples taken so far. Provided that an individual survives, it is subject to
continuously refined mutations under increasing selection pressure within the
population.
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4.1.2 Genetic Algorithms

Genetic Algorithms (GA) were developed by Holland (1975) and his asso-
ciates in the late sixties. A comprehensive introduction to GAs and their
properties is given in Reeves (1993), the standard GA textbook was written
by Goldberg (1989). Here again, continuous problems are the subject of opti-
mization. Holland referred back to the basic research of Mendel (1822-1884)
on genetic inheritance. Therefore he distinguishes between the genotype and
the phenotype of an individual. GAs model sexual reproduction by forming
offspring from genotypical information of two parental individuals.

In Hollands approach a system of continuous variables of a function to be
optimized is coded in a binary vector, called a chromosome. A chromosome
consists of a finite number of genes which can be thought of as values from
the alphabet {0,1}. In the GA lingo we call positions within this vector
loci and the possible values alleles. For fitness evaluation the chromosome
is transformed into an argument of the function to be optimized, namely
its phenotype. Then, the fitness is determined by means of the objective
function.

New chromosomes are generated syntactically by so called genetic opera-
tors which do not use problem specific information. The backbone of genetic
search is the crossover operator. It combines the genotypes of two parents
in the hopes to produce an even more promising offspring. The logic of the
crossover operator assumes that a successful solution can be assembled from
highly adapted pieces of different chromosomes. About one half of the geno-
typical information of two mating individuals are recombined to form an off-
spring. In GAs the mutation operator plays a background role. A gene once
lost by accident from the population will never appear again. Thus mutation
slightly changes chromosomes in order to reintroduce lost genes. Again, mu-
tation works without problem specific knowledge flipping a small number of
alleles randomly.

algorithm GA is
t:=0
initialize P(t)
evaluate individuals in P(t)
while not terminate do
t=t+1
select P(t) from P(t — 1)
recombine individuals in P(t)
evaluate individuals in P(t)
end while
end algorithm

Fig. 4.1. Holland’s reproductive plan.



52 4. Evolutionary Algorithms

Figure 4.1 gives a brief GA outline adopted from Holland (1975). Before
we start the algorithm, a suitable problem coding has to be found such that
solutions of the entire search space can be represented in a chromosome. In
a first step we set the generation counter ¢ to zero. Then the initial popula-
tion P(0) is filled with chromosomes, which consists of uniformly distributed
binary values. We evaluate the fitness of all chromosomes in P(0). The eval-
uation procedure decodes a chromosome into its phenotype and determines
its fitness by means of the objective function value. Now we start a loop for a
potentially infinite number of generations until some termination criterion is
met. A simple termination criterion is a fixed number of generations. In each
generation the counter ¢ is incremented. A new population P(t) is selected
from P(¢t — 1) by some selection operator. Typically proportional selection,
also called roulette wheel selection is used. The chance to place individuals
in the new population in generation ¢ is proportional to f;/f, where f; is
the fitness of the i’th individual and f, is the average fitness in P(t). Several
other selection strategies are discussed in Goldberg (1989). The individuals
in P(t) are recombined by crossover and mutation. Finally the individuals in
P(t) are evaluated in order to obtain fitness values for the selection in the
next generation.

4.1.3 Why Does Adaptation Work?

So far we have got a rough picture of how GAs work, but not much has
been said about “why” they work. An introduction to this topic is given
in Liepins and Hilliard (1989) and a more complete coverage is given in
Goldberg (1989). In fact, this topic is more difficult to explain as it may
appear at a first glance. We now neglect the progress of single individuals. In
turn we view the evolution of the species, i.e. the frequency of certain gene
combinations within the whole population. The gene variety of a population
is often referred to as gene pool. The foundation of GA theory was laid by
Holland (1975) introducing the schema theorem. A schema can be seen as a
sample which matches a number of chromosomes by neglecting some allele
values. Therefore the allele alphabet is extended by an asterisk as a “don’t
care” symbol.

chromosome : 0 1 1 0 1 0
schema *x 1 x 0 * x

An example of a schema is given above for a chromosome with six loci. The
schema samples all chromosomes having a 1 at the second and a 0 at the
fourth locus. Holland argued, that some schemata have a higher fitness contri-
bution than other schemata. Chromosomes which include successful schemata
result in highly fit offspring and therefore these schemata are inherited with
a high probability. Since all schemata existing in a chromosome are tested
in a single evaluation step, Holland calls the GA’s schema processing feature
intrinsic parallelism.
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Schemata are disrupted by the crossover operator. The schema shown in
the example above may be disrupted by a crossover operation cutting the
chromosome at its third position. Schemata are classified by their order and
their defining length. In the example we have a schema of order two (two
alleles are specified) and a defining length of three (the distance between the
first and last allele specified is three). It is unlikely that schemata of low order
and small defining length are disrupted by a crossover operation. Hence the
frequency of schemata of low order and small defining length, which show a
fitness contribution of above average, increases drastically over time. These
schemata called building blocks are regarded to be responsible for the GA’s
success. Building blocks may be combined with other successful schemata
during the evolutionary adaptation process.

Over the GA’s runtime the frequency of successful schemata in a popu-
lation’s gene pool is increased while inferior ones are discarded. Thus, the
number of different schemata existing in a gene pool decreases continually
throughout the environmental adaptation process. Although mutation intro-
duces a small amount of genes, the population converges because of increasing
selection pressure. In the context of GAs convergence denotes a declining gene
diversity of a population resulting in very similar individuals.

The genetic operators should be chosen in a way that exploration of new
solutions and exploitation of solutions found so far are well balanced. A GA
tending to exploitation may converge to a relatively poor local optimum. This
phenomenon is called premature convergence. In opposite, an excessive ex-
ploration prevents convergence by notoriously producing mediocre solutions.
The crossover operator is of particular interest in this context. It should
preserve building blocks and disrupt other schemata in order to test newly
assembled chromosomes.

one-point two-point uniform
parent1: 0 0 0 0 O 0 0 0 0 O 0 0 0 0 0
parent 2: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
offspringc. 0 0 0 1 1 0 1 1 0 0O 1 0 1 0 1

Fig. 4.2. Three different crossover operators and their outcome are shown. The
parts underlined in the mating chromosomes form the resulting offspring.

Holland suggested the one-point crossover operator in order to preserve as
many building blocks as possible. The one-point crossover can be explained
best by looking at a chromosome as a string. An offspring is assembled from
nearly the half of the two parental strings split at one point randomly. Build-
ing blocks located at the begin or end of a chromosome are preserved at
the expense of disrupting building blocks with a high probability which are
located in the inner part of a chromosome.
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A remedy has been proposed by introducing the two-point crossover, com-
pare Fig. 4.2. Instead of viewing a chromosome as a string, it is looked at as a
ring. A segment of one parent replaces a segment of the same size in the other
parent. Now, all schemata are disrupted with the same probability. However,
it has been pointed out by Syswerda (1989) that crossover operators using
more than two crossing points are superior in some applications. Syswerda
proposed the uniform crossover which uses a randomly picked number of
cross points of the set {0,1,...,n — 1} for chromosomes of length n. Since
uniform crossover disrupts building blocks arbitrarily, the schema theorem
cannot explain the success achieved by uniform crossover.

4.2 Adaptation in Epistatic Domains

The basic idea of GAs has been applied to combinatorial optimization during
the eighties. Since most combinatorial problems cannot be coded naturally by
strings of independent binary genes, a variety of non-standard codings were
introduced. In the following we outline the differences between independent
codings  which we have exclusively considered so far  and epistatic effects
in non-standard codings: Changes of gene frequency at certain loci of the
gene pool do not occur independently from changes at other loci. A host of
combinatorial problems, e.g. the JSP, are epistatic as noted by Davis (1985a),
Davis (1985h). Epistasis is well-known in biology, Smith (1989) mentions two
impacts of epistasis in evolutionary genetics.

1. If two loci are linked, changes in frequency at one locus may cause changes
at the other.

2. The fitness contribution of a gene at one locus may depend on what
alleles are present at other loci.

From both statements obstacles arise concerning the genetic representation
of a combinatorial problem. In case of linked loci, the crossover operator must
change the allele of one locus with respect to changes of alleles at linked loci.
Otherwise, invalid offspring (i.e. infeasible solutions) may be produced. Fur-
thermore, a large number of linked loci leads to de-correlated fitness contri-
bution of building blocks. Thus, the fitness contributions of schemata become
less predictable when inherited to offspring. Both effects are discussed in the
following with examples of two well-known combinatorial problems.

4.2.1 Crossover Procedures

Since we do not find a natural binary representation for most combinatorial
problems, we encode a solution into a genotype of higher cardinality. Typi-
cally the cardinality of the allele alphabet corresponds to the length of the
chromosomes such that each allele value occurs exactly once. We describe
design principles of codings and operators for two combinatorial problems.
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The Traveling Salesman Problem (TSP). The symmetrical TSP is the
most frequently cited example for the application of GAs to combinatorial
problems. A salesman has to visit each of a number of cities exactly once.
He is interested in an overall tour of minimal length. Hence the objective can
be mathematically formulated: Find a minimal Hamiltonian cycle among all
involved cities. Consider a problem with four cities A, B, C, D which already
define the allele alphabet for the chromosomal coding. Since each city has to
be visited once, the coding uses a chromosome of length four. Any feasible
chromosome is a permutation of the set {4, B, C, D}. The decoding procedure
interprets alleles of two adjacent loci as an edge of the Hamiltonian cycle. E.g.
the chromosome ‘ACDB’ is interpreted as (A,C),(C, D), (D, B),(B,A) in
the decoding step. The tour length is calculated by summing up the distances
between cities which are edge-weights in the corresponding undirected graph.
The achieved tour length determines the fitness of an individual.

For the coding proposed above a standard crossover risks to assemble
infeasible offspring. Consider two parents p; = ‘CADB’ and p; = ‘ABCD'.
Now form an offspring from the first two loci of p; and from the last two
loci of py. This one-point crossover results in the infeasible tour ‘CACD’
visiting city C twice while avoiding city B. Several non-standard crossover
operators have been developed for the TSP in the last decade. It is obvious
that not the absolute order (or position) of cities but the relative order of
cities within a permutation is of importance for phenotypical characteristics.
For example, the chromosomes ‘ABC D’ and ‘BCD A’ are equivalent in terms
of their relative ordering since both represent the same edges.

One of the first attempts to preserve the order of two parental substrings
in the offspring was given by Goldberg and Lingle (1985). They suggested
that in case of non-standard codings a non-standard crossover operator is
desired in order to preserve building blocks. Their approach resulted in the
partially mapped crossover (PMX). Another approach named order crossover
(OX) is due to Davis. Although both operators work similar, PMX tends to
respect the absolute order of cities whereas OX tends to respect the relative
order of cities. It was shown by Oliver et al. (1987) that OX works superior
to PMX for the TSP.

parent1 : C A D B Fig. 4.3. Order crossover (OX) applied to
parent2 : A B C D a four city TSP.
offspring : A C D B

In Fig. 4.3, we choose a substring in parent 1. Then, we delete the elements
in parent 2 which occur in the chosen substring. Finally, we combine the re-
maining part of parent 2 with the substring of parent 1. Up to now several
more sophisticated crossover operators have been developed. The currently
best one has been suggested by Whitley et al. (1989) under the name edge
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recombination operator (EX). Again, the ordering is emphasized: What is im-
portant is not that a particular city occurs in a particular position, but rather
that the genetic operators preserve and exploit critical links that contribute
to the minimization of the overall tour. In accordance with other researchers
Whitley reports that for pure ordering problems two-point crossover can pre-
serve characteristics much better than uniform crossover.

The Quadratic Assignment Problem (QAP). Let us consider a QAP
example stated by Elshafei (1977). A fixed number of sites (locations) in a
hospital are provided where magazines (units) have to be placed. Further-
more flows of medicaments occur in different intensities between the maga-
zines. The goal is to assign the magazines to sites in such a way that the
sum of flow intensity x distance’ is minimized for all magazines involved.
Mathematically, the QAP can be stated as follows.

T 2 e an

i=1 j=1

Generally speaking, a number of n units has to be assigned to n locations.
Here A = (a;j) denotes a quadratic matrix of flow intensity from unit i to
unit j and B = (b,5) denotes the distance matrix between two locations r
and s. A solution to the QAP can be uniquely expressed by a permutation
m € P(n) of size n. Notice that the distance indices r and s are obtained
from the permutation by m; and 7;. A coverage of interesting properties of
the QAP and a comparison of standard heuristics is given in Taillard (1994).

We have seen that a permutation of size n utilizes a natural coding for
the QAP. The size of the allele alphabet must be equal to n, representing the
units which are assigned to locations. Each allele value must occur exactly
at one locus. Note that for the TSP an identical coding has been proposed.
But the local interactions of genes appear radically different for the QAP. For
assignment problems the position of genes is of particular importance whereas
the relative ordering is meaningless for phenotypical characteristics. Again we
need a non-standard crossover operator in order to guarantee valid offspring.
For the QAP an operator is needed which preserves the absolute ordering of
genes. A uniform crossover is suggested by Fleurent and Ferland (1994).

1. If an allele is assigned to the same locus in both parents, it remains at
the same locus in the offspring.

2. Unassigned loci are scanned from left to right. At each locus we pick an
allele at random from one of the parents corresponding loci.

3. The remaining alleles are assigned randomly to so far unassigned loci.

parent 1 A B C D Fig. 4.4. Example of a uniform crossover
parent2 : C B D A for a QAP consisting of four loci.
offspring A B D C
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In Fig. 4.4, we place B at the second locus since it occurs at this position
in both parents. Next, we traverse the chromosome from left to right. For
each unassigned locus we choose a parental allele at random. In the example
A is taken from parent 1 and D is taken from parent 2. At the last locus both
parental alleles A and D have already been placed in the offspring. Therefore
we place the remaining allele C' at the last locus in a third step. Notice that
it does not occur at the fourth locus in one of the parents. This phenomenon
is called implicit mutation because new genetic information is introduced.

Implications. We have used the same coding structure for two different
combinatorial problems. Chromosomes are decoded in a way that build-
ing blocks appear different in the TSP and the QAP context. Therefore
we have introduced two crossover operators which preserve building blocks
appropriate to the underlying problem. However, both crossover techniques
work syntactically correct in the context of both problems. But as noted by
Kargupta et al. (1992), the success of a genetic algorithm depends on how
well the crossover operator respects the semantic properties of the underly-
ing problem coding.

Kargupta et al. construct two artificial problems, one for which the ab-
solute order is of importance and another for which the relative ordering
of genes is particularly important. For both problems they use PMX which
tends to preserve the absolute ordering in comparison to a relative ordering
crossover similar to OX. They show, that a GA only works satisfactorily if
the appropriate crossover is used. Their work gives an additional hint on the
relevance of schema disruption within genetic reproduction.

We can state that it is not sufficient to produce just feasible chromosomes
by some crossover technique. A single gene does not represent meaningful
phenotypical characteristics in epistatic problems. Meaningful characteristics
are encoded within blocks of dependent genes. Since we intend to inherit
these building blocks we have to preserve them while crossover is active.

In order to avoid the production of invalid offspring three remedies next
to non-standard operators are reported in literature.

— Penalize the fitness value of infeasible genotypes. The penalized genotypes
will then be discarded from the population by means of selection with a
high probability.

— Repair infeasible genotypes in the decoding step. Infeasible genotypes are
transformed into similar feasible ones. The repair procedure guesses the
crossover intention and repairs the chromosome adequately.

— Do not use genotypes at all. Genetic operators work directly on the phe-
notypical representation of the problem. Crossover ensures offspring feasi-
bility by having direct access to the problem data.

A fitness penalty seems adequate if only a few infeasible solutions are
generated within each generation. But for the class of combinatorial order
problems,; including the TSP and the QAP, most offspring resulting from
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standard crossover are invalid. Repairing chromosomes in the decoding step
is a serious alternative to fitness penalties. A feasible offspring obtained from a
repair procedure does not necessarily resemble the offspring actually intended
by crossover. We hardly can repair infeasible solutions adequately in later
steps, because the crosspoints are no longer visible in the decoding step.
The third remedy, phenotypical crossover, appears highly problem de-
pendent and lacks comparability with other crossover approaches. Thus, the
design of new non-standard crossover techniques is the most frequently used
approach in applying genetic algorithms to combinatorial problems.

4.2.2 Fitness Contribution

We conjecture that the accumulation of building blocks in the gene pool
of a population is responsible for the increasing fitness of individuals over
the generations. In order to accumulate building blocks in the gene pool, a
combination of these blocks in the chromosomes must be provided. Thus, we
identify an individual’s ability to combine building blocks adequately as a
hallmark of successful adaptation.

The ability of combining building blocks highly depends on the degree
of epistasis in the underlying coding structure. For independent codings (i.e.
non-epistatic codings) arbitrary building blocks can be combined with one
another. Here, the individual’s fitness is determined by the overall fitness
contributions of the various schemata represented in the chromosome. But
in codings with a high degree of epistasis, the combination of two promising
building blocks may, in extreme cases, result in a disastrous fitness contribu-
tion of the newly assembled individual.

What we can expect from artificial adaptation depends on the optimiza-
tion problem under consideration. In order to give a qualitative impression
of epistasis, we outline its effects by examples of the TSP and the QAP.

The Traveling Salesman Problem. Let us consider an allele representing
a city at a certain locus of a permutation chromosome. We can figure out the
degree of epistasis by examining the smallest number of genes involved in a
meaningful fitness contribution. As stated earlier in this chapter, two adjacent
genes determine an edge connecting two cities. The fitness contribution of
two adjacent cities is calculated by the distance between both cities. Thus, a
fitness contribution of a single city depends on the left and right cities in the
chromosome. Both distances are taken into account with 1/2 of their length,
because edges are not directed in the symmetric TSP.

The fact that crossover may introduce new edges at the crosspoints, even
if the relative ordering of cities is preserved almost entirely, makes the TSP
hard to solve for a GA. But the introduction of these implicit mutations
cannot be avoided in all cases. Hence, even a small degree of epistasis may
lead to a large deviation of the tour length.
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The Quadratic Assignment Problem. Let us consider a single gene rep-
resenting a unit at a certain location of the QAP. Here, the degree of epistasis
depends on the density of the flow matrix. Let us assume an extremely dense
flow matrix such that flows occur from each unit to all other units. In this
case each gene is linked to all other genes of the chromosome. In case of such
a large degree of epistasis the QAP is also known to be very hard to solve for
any kind of heuristic search.

Implications. Generally, a high degree of epistasis will result in a small
number of outstanding building blocks. In other words, most schemata are
indifferent concerning their fitness contribution. Selection pressure cannot
increase the average fitness beyond some mediocre optimization quality.
New genetic information is continually introduced by implicit mutations.
The search process continues tediously combining different schemata with-
out making further progress. The adaptation process has lost its direction of
search.

Even if we assume a few outstanding building blocks for a problem, the
GA will hardly maintain these schemata against the huge number of mediocre
ones which are continuously sampled. Therefore selection pressure cannot in-
crease. The GA is prevented from discovering promising schemata and driv-
ing out less promising ones from the gene pool. Only at the beginning of the
adaptation process some obviously unfavorable schemata are discarded from
the gene pool. However, after this stage, further progress is limited.

Various attempts have been made to overcome the obstacle of epistatic
effects on fitness contribution.

— A severe selection scheme may reintroduce a direction of search. Therefore
Baker (1985) suggests a ranking of the fitness values of a population. In
this strategy the population is sorted according to the fitness values. Indi-
viduals are given a selection rate which is solely a function of their rank.
Rank-based selection was also used by Whitley (1989). Generally speaking,
ranking disassociates the fitness from the underlying objective value. This
removes the need to determine the relative quality of individuals, as noted
by Angeline and Pollack (1993) in a related context. Since we cannot rely
on fitness proportions in epistatic domains, we confine individuals to the
criterion of being better than others in order to be selected into the new
population.

— The selection pressure can be artificially increased by rejecting unfavor-
able new individuals, compare Miihlenbein (1990). An offspring replaces
its parent only if some prescribed acceptance criterion is met. Miihlenbein
proposed a two stage selection for a parallel genetic algorithm where mate
selection is restricted to relatively small demes. First, offspring replace
their parents only in case of acceptance. Next, mates are chosen based on
rank selection. The advantage of acceptance is twofold: Fitter individuals
are preserved by the acceptance stage. Since unfavorable individuals are
rejected, the selection pressure in the mate selection stage is increased.
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— A so called culling scheme is used to remove unfavorable offspring from the
next population, see Vaessens et al. (1992), Fleurent and Ferland (1994).
Using Miihlenbein’s acceptance, offspring are rejected by a direct com-
parison with their parents. In traditional GAs only an indirect relation
between parents and their offspring exists. Therefore the average fitness of
the population is used for the rejection of the least fit offspring. Given a
fixed population size u, in each generation u + A offspring are produced.
The culling procedure removes the A least fit offspring from the next pop-
ulation. Again, for the remaining fit individuals the selection pressure is
artificially increased.

— The elitist strategy assures that the most fit individual(s) of the current
population and the newly generated offspring are placed in the next pop-
ulation. Elitism was introduced by De Jong (1975) in order to obtain fast
convergence. If a highly fit individual is continually involved in the mat-
ing process, the population moves towards this individual and is therefore
forced to converge. The drawback of elitist models is obvious: Assume a
good local optimum which is discovered by an elitist individual. Further-
more consider the global optimum in the search space “far away” from the
local one discovered so far. Now the whole population will converge towards
this local optimum which drastically decreases the chance to discover the
global optimum. However, the elitist model introduces a direction of search
whenever epistatic effects disorients genetic search.

Of course, what has been said about the elitist model is true for rank
selection, acceptance and culling. Actually these mechanisms exclude large
areas of the search space from being visited. Therefore these attempts were
heavily criticized by GA theorists. However in practice, the GA is helped to
maintain above average fit schemata against the majority of mediocre ones. A
negative side-effect of these mechanisms is that schemata are discarded from
the gene pool without having been tested sufficiently. The degree of epistasis
is virtually reduced if individuals resemble each other because schemata are
processed in a similar way only. Consider two linked loci such that the fitness
contribution of the one locus depends on what allele is present at the other
locus. Furthermore consider that the one locus carries the same allele in the
entire gene pool. In this situation the epistatic effect concerning these two
loci is eliminated and the search may proceed within the resulting subspace.

4.3 Genetic Hybrids

We have seen that non-standard codings require more sophisticated genetic
operators than purely syntactical ones, which are used in traditional GAs.
Whenever there is additional domain knowledge available, we may give up
the “syntactical” view and turn to semantic genetic operators instead. The
incorporation of problem specific heuristic knowledge into genetic operators
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is called hybridization. In the following we describe a model of plausibility
for genetic hybrids taken from biology. Then we take a look on how heuristic
knowledge can be incorporated into evolutionary search. Finally we discuss
the incorporation of Local Search into an evolutionary framework.

4.3.1 Evolution versus Learning

Again, we stress evolutionary genetics in order to obtain an appropriate model
of plausibility for genetic hybrids. The French biologist Lamarck (1744-1829)
regarded individual learning to be responsible for the adaptation of a species
to a given environment. During its lifetime an individual adapts to its environ-
ment by learning. Lamarck conjectured that these acquired characteristics are
passed on to offspring. Later in the 19’th century Darwin rejected Lamarck’s
views and identified genotypical information to be responsible for the adap-
tation of species. In 1896 Baldwin (1861-1934) partially approved Lamarck’s
view by proposing that learning increases the individual fitness and therefore
increases the probability to generate offspring, see Whitley et al. (1994).

Nowadays a societies culture is regarded to act as an intermediate system
in order to transfer individual learning into the evolution of a population,
see Smith (1987), Belew (1989). Although only genotypical information is
biologically inherited, we emphasize that learned information is transmitted
between generations.

Since a species could adapt to its environment much faster by passing
on learned information to offspring than by a pure genotypical hereditary
mechanism, we may ask why this phenomenon can hardly be found in na-
ture? Smith (1989) gives a reasonable answer by distinguishing phenotypical
changes of adaptive and non-adaptive origin. In nature, most phenotypical
changes to an individual are non-adaptive resulting from injury, disease and
old age; and hence worthless in order to be inherited. Since adaptive changes
of a phenotype cannot be separated from non-adaptive ones, a transmittance
of phenotypical changes to offspring would be unfavorable in most cases.

In the context of artificial adaptation learning is considered as a metaphor
for individual improvement techniques (e.g. hill climbing). Here, we are able
to control the phenotypical changes of individuals. Hence we may permit an
individual to learn, but prevent the individual from inheriting unfavorable
phenotypical changes.

Lamarckism is described by Schull (1990) as the adaptation by pheno-
types whereas Darwinian evolution is regarded as the adaptation by the gene
pool. Consequently Schull understands adaptation in the sense of Lamarck
as a simple by-product of the achievements gained by individual learning.
Herewith Schull formulates an extreme viewpoint in paying predominant at-
tention to the individual hill climbing abilities. But we cannot rigidly neglect
the effects of evolution, because the gene pool still provides the frame for in-
dividual learning. Hence we understand genetic hybridization as a continuous
repetition of a two-stage learning process.



62 4. Evolutionary Algorithms

1. Genetic adaptation guides the search by maintaining the gene pool from
which promising individuals are assembled. Genetic adaptation exploits
favorable characteristics and therefore introduces a rough direction of
search.

2. Individual learning produces fit individuals on the basis of the current
gene pool. The individuals greedily explore promising points in the search
space and return the characteristics acquired into the gene pool.

4.3.2 Hybridization Approaches

The first attempt to incorporate heuristic knowledge into a non-standard
crossover was done by Grefenstette et al. (1985) for the TSP. In this approach
the crossover operator plays an active role in the optimization process itself.
The offspring is assembled by iteratively choosing those cities from both par-
ents which increase the overall tour length by the least amount. This crossover
operator requires access to the distance matrix of all cities involved. As noted
by Suh and Van Gucht (1987), the operator attempts to glue together good
(i.e. short) sub-paths of the parental tours. Crossover acts globally on the
chromosome which is assembled by successively estimating the costs of the
next city to be visited.

Suh and Van Gucht propose Local Search inside a TSP crossover. They
apply the algorithm of Lin and Kernighan (1973) in order to fix a local opti-
mum after the offspring is assembled in the mating step. A related approach is
proposed by Miihlenbein (1991) who places the Lin and Kernighan algorithm
in the decoding step of the fitness evaluation. The intention of using Local
Search is to reduce the search space to the subset of local optimal solutions.

Provided that the decoding procedure does not alter the genotypical infor-
mation, we obtain an identical offspring regardless whether the Local Search
procedure is applied in the crossover or in the decoding procedure. Thus, the
notion of heuristic crossover might be misleading if a Local Search procedure
is placed inside the crossover, but does not actually control the assembly pro-
cess on parental genes. For clarity, we distinguish heuristic re-optimization
from heuristic crossover procedures. Both types of knowledge incorporation
are discussed separately in the following.

Crossover: Heuristic knowledge is used to assemble highly fit offspring from
parental solutions. The idea is to combine promising characteristics of
both parents in an appropriate manner. The inherited genes are chosen
by a problem specific heuristic. Typically, decision steps adopted from
solution generation techniques (as described in Sect. 2.2 for the JSP)
are used to assemble offspring. Futilely unfavorable offspring are avoided
at the expense of excluding large areas of the search space from the
search process. Local Search techniques (as described in Sect. 3.2) are
less suitable, because they require an already assembled solution.



4.3 Genetic Hybrids 63

Evaluation: We can either use a solution generation technique in the de-
coding procedure or a Local Search technique which is applied after
the decoding step is completed. The idea of the latter approach is to
re-optimize individuals which are previously assembled by a syntactical
crossover operation. Since the individual is modified by the re-optimizing
heuristic, we typically write the transformed phenotype back to its geno-
type. This action of “writing back” is called updating or forcing, see e.g.
Nakano and Yamada (1991). Heuristic decoding can be seen as a filter
which discards or reinforces characteristics assembled by the crossover
procedure. At the extreme we may view the adaptation of the gene pool
solely as a result of the heuristic re-optimization procedure used.

It is noted by Davis (1991), that traditional GAs are never the best algo-
rithms to use for any problem. By combining a GA with a problem specific
heuristic we always expect better results compared to running the problem
specific heuristic alone. For epistatic codings of combinatorial problems the
benefit of using heuristic knowledge is twofold. First, the crossover procedure
is helped to recombine individually successful parts of parental solutions into
an offspring of similar or even better fitness. Second, the selection procedure
is helped to prevail successful schemata against mediocre ones because build-
ing blocks are now evolved and expressed by both, artificial adaptation and
heuristic knowledge.

4.3.3 Incorporating Local Search

In order to incorporate Local Search into a genetic algorithm we need a suit-
able problem coding, a decoding procedure as described in Sect. 4.2 and an
efficient hill climbing procedure, compare Sect. 3.2. Additionally, an update
procedure is required which transforms the re-optimized phenotype back into
the genotype. Finally a fitness function is needed.

genotype g
function evaluate(g) is
phenotype p
p := decode(g)
p = hillclimb(p)
g := update(p)
return fitness(p)
end function

Fig. 4.5. Evaluation function of a hybrid GA.

An illustration of a hybridized evaluation function is given in Fig. 4.5.
First, the genotype g is decoded into the phenotype p. Next, a hill climbing
procedure is applied to p. Then g is updated by the re-optimized p. Finally,
p’s fitness is returned.
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Obviously, the schema theorem stated by Holland does not hold for genetic
hybrids. Heuristic knowledge immediately discards several schemata from the
gene pool. For other schemata a proliferation due to heuristic knowledge oc-
curs. In both cases the schemata affected have not been tested sufficiently by
the genetic adaptation process. Therefore Whitley (1993) raises the interest-
ing issue of viewing genetic hybrids more as hill climbing and less as schema
processing algorithms. This question is of particular importance when inter-
actions between the evolution and individual hill climbing are considered.

The advantages of Local Search components inside an evolutionary frame-
work are obvious. The search space is restricted to (learned) local optima.
Characteristics of local optima are directly inherited to offspring. Whether a
hybrid GA benefits from hill climbing highly depends on the problem under
consideration. If near-optimal solutions tend to populate certain small areas
of the search space, the hill climbing procedure can accelerate the prolifera-
tion of favorable solution characteristics in the population considerably.

Otherwise, individuals will hardly benefit from Local Search runs in pre-
vious generations. If cooperative effects based on gene exchanges are almost
absent, evolution is restricted to a competition between individuals. In this
sense we understand crossover to perturb parental genetic information re-
gardless of building blocks. The hill climber explores new points in the search
space on the basis of the perturbed chromosomes. Consequently, we may re-
place sexual reproduction by asexual reproduction due to mutation. A severe
selection scheme can assure the survival of the best solution found so far.

This kind of adaptation process can be seen as a combinatorial counter-
part to ES. A further simplification to the ES-like procedure described above
has been made by Miihlenbein (1992) introducing the (141, m, he) algorithm.
Following Schwefel’s y+ A notation, 1+ 1 expresses that one parent produces
one offspring in each generation. The probability of altering each bit of the
binary chromosome by means of mutation is given by m. Finally hc denotes
the hill climbing procedure used. A similar algorithm is proposed under the
name random mutation hill climb (RMHC) by Mitchell and Holland (1994).
Both algorithms iteratively alter a solution by means of mutation. Then a
hill climber is applied to the mutated solution. If the objective value can
be improved, the parent solution is replaced by its offspring. In fact, such
algorithms show more similarities with Local Search techniques than with
conventional EAs.

When thinking about genetic adaptation for the JSP light must be shed
on two essential issues. First, do we find a genetic representation which con-
figures the solution space in a way that the resulting search space is relatively
easy to be searched? Second, do we find genetic operators for such a repre-
sentation that inherit building blocks adequately to offspring? The following
consideration for the JSP are based on the general discussions of this chapter.
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The interactions between the different components of a genetic adaptation
process are difficult to understand and eventually even more difficult to
control. Therefore we offer an outlook on the perspectives of evolutionary
scheduling. In the first section different ways of configuring the solution space
of a scheduling problem are discussed. Afterwards, the properties of a genetic
representation, which configures the solution space in a promising way, are
investigated. This investigation is inspired by the wish to understand the
most important impacts of evolutionary scheduling.

5.1 Configuring the Solution Space

We now describe some general ideas of recently proposed search spaces for
scheduling problems. Hereby we pay particular attention to their represen-
tation, to appropriate genetic operators and to the incorporation of problem
specific knowledge. Finally we discuss the different search spaces and end up
with a representation which is used from there on.

In literature we find numerous applications of evolutionary algorithms
in production scheduling. Nissen (1994) lists 18 GA references on JSP re-
lated problems. The various approaches are not directly comparable because
they cover problems including different constraints and objectives. Moreover,
reports on computational results are rather scarce. Thus, a detailed compar-
ison of all of these implementations cannot be covered in this thesis. Instead
we classify the various approaches by their search spaces as proposed by
Storer et al. (1992a). According to Storer et al. a deterministic heuristic A is
a mapping of the problem instance p to a solution s. Therefore the couple
(h,p) can be seen as an encoding of a solution s = h(p). The common pro-
cedure of heuristic search is to modify a solution s iteratively. In contrast
Storer et al. propose search spaces by either parameterizing the heuristic h
or by modifying the problem p. The former attempt searches for a parameter
vector for h, capable to generate a good solution s from p. The latter method
modifies the problem p in a way that h generates a good solution s. Following
Storer et al.; we differentiate between a heuristic-, a problem-, and a solution
search space.
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5.1.1 Heuristic Search Space

The first GA application to scheduling has been proposed by Davis (1985b).
Davis considered a simplified two product job shop with parallel machines
and product dependent setup times. Unfortunately, this first approach suf-
fered from the restricted production model and was therefore not continued
by later research. Nevertheless Davis introduced the encoding/decoding prin-
ciple for combinatorial problems. A genotype does not contain a complete so-
lution but rather consists of encoded decision rules which are decoded into a
feasible phenotype in the fitness evaluation. Thus, the genotype decoding by
means of a schedule generation technique plays a central role in evolutionary
scheduling.

A heuristic search for the JSP is proposed by Dorndorf and Pesch (1995).
They use a schedule generation technique, described in Sect. 2.2, as the de-
coding procedure. Recall, that a schedule generation technique contains a
reduction operator ¥, which reduces the set of schedulable operations ac-
cording to a prescribed criterion, e.g. the activeness of the resulting sched-
ule. Furthermore a choice operator @ is needed, which chooses an operation
from the reduced set to be scheduled next. Dorndorf and Pesch engage the
Giffler&Thompson (G&T) algorithm for ¥, compare Sect. 2.2.2. The G&T
algorithm reduces the set of schedulable operations in such a way that ac-
tiveness of the resulting schedule is assured. If the reduced set resulting from
¥ contains more than one operation, one of them is selected by a priority
rule @, compare Sect. 2.2.3. Within the GA each gene represents a priority
rule from a given set of rules. While decoding a chromosome, the i-th rule is
applied for scheduling the i-th operation. Therefore the length of a chromo-
some is equal to the number of operations involved. The idea is to produce
chains of priority rules which fit the needs of a particular problem instance.
The results obtained by the priority rule based GA are not really convincing,
as reported by the authors.

Therefore Dorndorf and Pesch (1995) propose a second approach based
on the Shifting Bottleneck (SB) algorithm, compare Sect. 2.3.2. Recall, that
the SB algorithm optimizes the processing sequence of the bottleneck machine
using the Branch&Bound (B&B) algorithm of Carlier (1982). In each stage
of the SB algorithm the optimal sequence of the current bottleneck machine
is added to the schedule. Dorndorf and Pesch do not rely on the bottleneck
criterion, instead they make the order of inserting optimal single machine se-
quences into the partial schedule a subject of the GA. Thus, a chromosome of
length m representing a permutation of all machines involved in the problem
is a suitable coding. The SB algorithm acts as the decoding procedure by
inserting the optimal machine sequences with respect to the order defined in
the chromosome. The GA emerges orders of machine sequence insertions for
the SB algorithm. Notice, that the search space is extremely small for this
approach, whereas the decoding is computational expensive. Although this



5.1 Configuring the Solution Space 67

approach comes up with good results (938 for the mt10 problem), it seems
to be limited to problem instances of moderate size.

For both representations sketched above a standard crossover guarantees
the generation of valid offspring, because genes representing priority rules are
independent of each other. A remaining question is whether we can identify
building blocks in chromosomes carrying priority rules? Storer et al. (1992b)
report that it is important to place priority rules of competing operations
close together in the chromosome. They regard the operations to be processed
on a single machine as competitors in the G&T algorithm. However, it may
be difficult to identify building blocks in a heuristic search space since a
permutation of priority rules is an indirect configuration of the solution space.

5.1.2 Problem Search Space

Instead of adopting the decoding procedure to the problem, the problem
instance itself can be adopted to the properties of the decoding procedure.
This novel and witty approach is proposed by Storer et al. (1992b).

Again, a variant of the G&T algorithm is used to produce active sched-
ules. A deterministic scheduling algorithm is obtained by using the shortest
processing time rule (SPT) as operator @. In order to produce different so-
lutions for a problem instance, the processing times of the operations are
slightly modified. A chromosome is defined as a vector of deviations § of the
prescribed operation processing times p. First, the decoding procedure builds
up a solution which is based on the p + § values. The obtained sequence of
operations for the modified problem is stored. Finally the fitness is deter-
mined for the stored sequence, now using the original processing times p.
The deviation vector indirectly defines a processing sequence of operations
by means of the deterministic decoding procedure.

Crossover combines parental d values in order to obtain fitter offspring.
A modification of a § value is only possible by a mutation which adds a
uniformly distributed random variable to a single §. Storer et al. (1993) use
a high mutation rate of 15% for the described GA. This gives a hint on the
importance of mutations in their approach.

The problem space GA emerges operation sequences, which indirectly
result from modifications of the underlying problem. Although this configu-
ration of the search space appears rather complex, a standard crossover can
be used. Since chromosomes consists of independent genes carrying § values,
feasibility of the resulting solution is guaranteed in all cases. However, the
operation sequence of an active solution of the modified problem may not
correspond to an active solution of the original problem. Hence, the larger
the deviations of processing times grow, the less likely will the G&T algo-
rithm fit the original data. Therefore optimal solutions of the original problem
may be excluded from search. In spite of the above considerations, the results
reported in Storer et al. (1993) are fairly good, e.g. 954 for the mt 10 problem.
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5.1.3 Solution Search Space

Now we turn to more traditional codings which directly encodes the solutions
of a problem. In the following we differentiate between binary, symbolic and
time dependent representations, all of them expressing precedence relations of
operations. First a binary representation is described, next symbolic codings
are discussed. Finally schedule representations are covered, which use the
starting- or completion times of operations as genotypical information.

Binary Representation. A binary representation of the JSP is proposed by
Nakano and Yamada (1991). Their coding consists of genes denoting prece-
dence relations of operations which are processed on the same machine. A
single gene determines whether operation v is sequenced prior to operation
w (v<w = 1) or not (v<w = 0). Since each job is to be processed on each
machine, we need a chromosome of length m-n. In case that gene v<w is
specified, gene w=<wv is redundant and therefore omitted. Hence, we end up
with a chromosome length of mn(n — 1)/2 bits.

Fig. 5.1. The acyclic graph representation adopted from Fig. 2.3.

An example of a schedule given in the acyclic graph representation is
shown in Fig. 5.1. It corresponds to the machine selections previously pre-
sented in Fig. 2.3, merely the processing times are left out here. For the
example all precedence relations (loci) and the specified binary alleles are
given below.

1<6 2<4 3<5 1<8 2<7 3<9 6<8 4<7 5<9

1 0 0 1 0 1 1 0 1 (5.1)

In terms of the graph representation, a gene determines the direction of a
single (dashed) arc. Operation 1 is sequenced prior to operation 6 expressed
by the allele 1 at the locus 1<6. Next, operation 2 is sequenced after 4 ex-
pressed by a 0 etc. The chromosome 100101101 represents a unique solution.

This binary coding allows Nakano and Yamada to use a standard binary
crossover. Unfortunately, the crossover produces infeasible solutions in many
cases. Therefore a newly assembled chromosome has to pass a two stage repair
mechanism in order to be decoded properly.

1. A local harmonization algorithm provides a legal machine sequence for
each machine involved.
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2. A global harmonization algorithm removes inconsistencies between the
various machine sequences.

RN T Fig. 5.2. Infeasible sequence (2,7,4)
O resulting from binary crossover.

®

Let us consider the chromosome 000011101 which might result from a
crossover. Decoding it according to (5.1) we obtain the machine sequences
shown in Fig. 5.2. Here, the sequence (2,7,4) contains a cycle. Therefore
a local harmonizer may reverse arc (4,2). The algorithm achieves an arc
constellation between operations of the same machine such that

Yo € O; : indegree(v) + outdegree(v) = |0;] — 1, (5.2)
Yo, w € O, v # w : indegree(v) # indegree(w). (5.3)

Set O; consists of all operations to be processed on machine M;. Now,
(5.2) ensures that each of two operations are connected on every machine,
which is a sufficient condition for the existence of a Hamiltonian path among
the operations on every machine. According to (5.3) indegree(v) is injective
on O;, which is a necessary condition for the existence of a Hamiltonian path
in the acyclic subgraph of a single machine.

Now the machine sequences obtained from the local harmonizer are in-
troduced into the graph D which consists of technological constraints only,
compare Sect. 2.1.2 and Fig. 2.8. This again may result in an infeasible solu-
tion as shown by the cycle emphasized in Fig. 5.3. Again, a machine sequence
has to be modified in order to obtain a feasible schedule. This is the role of
the global harmonizer which is part of the schedule builder. Each time the
schedule builder runs into a cycle, the global harmonizer is called. Here, the
arcs (2,7) and (2,4) may be reversed in order to repair the solution. Since
arc (2,4) has been reversed previously by the local harmonizer, the reversal
of only one arc in the chromosome results in a feasible schedule. Actually,
the harmonization algorithm does not guarantee a minimum of arc reversals
in order to obtain the feasible symbolic solution.

Fig. 5.3. The infeasi-
ble solution resulting
from local harmoniza-
tion.
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Fig. 5.4. The sym-
bolic solution result-
ing from global har-
monization.

Together, the original chromosome 000011101 representing an infeasible
solution may be changed to the chromosome 000001101. This modified chro-
mosome is regarded as symbolic representation of the feasible solution shown
in Fig. 5.4.

Each chromosome evaluation requires the complex repair procedure de-
scribed above. Obviously, this is a high price to pay for the advantage of using
a binary representation. Moreover, the harmonization algorithm introduces a
high degree of schema disruption due to the repair of the genotype. Therefore
Nakano and Yamada update the original genotype by its repaired version in
order to force the GA to learn valid building blocks. They show, that this kind
of forcing improves the GA significantly. Hence, it appears promising to look
for a genotype space which covers symbolic representations more directly.

Symbolic Representation. The basic idea for a symbolic representation
has been formulated by Syswerda (1991). He states that a schedule consists
of a number of potentially temporal overlapping tasks (operations).

“This view allows us to consider scheduling as an ordering or com-
binatorial problem. What fundamentally must be done is to place a
list of tasks in a particular order. ... To circumvent the problem of
illegal orderings, we use a deterministic schedule builder that takes a
particular task sequence and builds a legal schedule from it. ... What
emerges is a legal schedule for the given ordered list of tasks.”

In accordance to Syswerda we aim to consider permutations of operations
as genotypes. The relative operation orders given in a permutation chromo-
some determine a precedence relation among the operations involved. This
interpretation of genotypes is very close to the coding presented for the TSP
in Sect. 4.2.1. For the TSP a Hamiltonian cycle among all cities determines a
solution. For the scheduling problems considered in this thesis Hamiltonian
paths among the operations of each machine determine a solution.

Flow shop problems (FSP) constitute a subclass of job shop problems.
For FSP’s, all jobs have an identical processing order (i.e. line processing).

Fig. 5.5. A solution

~(8)
2 to a 3x3 FSP repre-
sented by 3 Hamilto-
@ nian paths.

@t
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Fig. 5.6. Solution to

\\SJ‘ a 3 x3 JSP repre-
sented by 3 Hamilto-
“~(5)— nian paths.

—=@

Bierwirth (1993) proposes a symbolic coding for the FSP which handles ma-
chine sequencing like an asymmetric TSP. An overall schedule is encoded by
concatenating all machine sequences. The FSP shown in Fig. 5.5 is e.g. en-
coded by the permutation 741/825|369. For this approach a TSP crossover can
be used which is applied to each substring of the chromosome separately. The
decoding procedure establishes Hamiltonian paths for each machine sequence
by scanning the operations within each substring from left to right.

Extending the coding of the FSP to the general JSP requires the consider-
ation of interdependencies between different machine sequences, i.e. machine
sequences cannot be handled separately anymore. Figure 5.6 shows a constel-
lation of three Hamiltonian paths which constitute a feasible JSP solution.
A valid chromosome for this example is the permutation 745681239. Again,
the string is interpreted by scanning it from left to right. This leads to a tem-
poral order, because an operation is only schedulable if all its predecessors
have been scheduled before. Thus, valid permutations are restricted to pos-
sible topological sortings of the acyclic graph. Now consider the permutation
754681239 which may result from a crossover operation. The permutation
differs from the one above in a swap of operation 4 and 5, and therefore does
not constitute a valid topological sorting.

This obstacle of assembling infeasible chromosomes can be circumvented
by using a slightly modified coding proposed by Fang et al. (1993) and
Bierwirth (1995) independently. Bierwirth introduces a coding under the
name 'permutation with repetition’. Its structure as well as its decoding has
been outlined in detail in Sect. 2.2.3. Recall, that we use job identifiers in-
stead of just operations in order to define a topological sorting of operations.
An example is given in Fig. 5.7 for the schedule of Fig. 5.6.

permutation of jobs 3 2 2 2 3 1 1 1 3 Fig. 5.7. Permutation with
index of occurrence 1 1 2 3 2 1 2 3 3 repetition representation.
referred operation 7 4 5 6 8 1 2 3 9

The permutation of jobs shown in Fig. 5.7 is decoded in the following
way: First, schedule an operation of job 3. Then schedule an operation of job
2 followed again by an operation of job 2 etc. Notice, that each job identifier
calls a well defined operation because each job allows at most one operation to
be scheduled next. The second line of Fig. 5.7 is not part of the chromosome.
It denotes the index of occurrence of a job identifier in the permutation with
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repetition. Finally, the third line shows the operation which is referred to by
the corresponding index of the current job identifier, e.g. the identifier of job
3 with index 2 refers to operation 8. As described earlier in Sect. 2.2.3, this
coding covers all feasible solutions of a problem instance. Therefore it can
serve as a genetic JSP representation, as long as genetic operators preserve
the index structure of a permutation.

Bierwirth (1994) proposes a generalized order crossover (GOX), which is
adopted from the OX operator, compare Sect. 4.2.1. First, a substring is cho-
sen from the donating chromosome. Next, all operations of the substring are
deleted with respect to their index in the receiving chromosome. Finally, the
donator’s substring is implanted into the receiver at the position where the
first operation of the substring has occured (before deletion) in the receiver.

parent 1 322 2 31113 Fig. 5.8. Generalized order
parent 2 1 173 2 F 1 2 3 3 crossover (GOX).
offspring 1322 2 3113

In Fig. 5.8 the underlined substring is taken from parent 1. It consists
of two operations of job 2 (index 2 and 3), of one operation of job 3 (index
2) and of one operation of job 1 (index 1). These operations are deleted in
parent 2. Afterwards, the substring is implanted in parent 2 at the former
position of job 2 (index 2). The case of contradicting relative job orderings
in the parents is automatically solved by implicit mutations. In the example
of Fig. 5.8, the immediate predecessor of the first operation of job 3 in the
offspring is the first operation of job 1. This constellation does not occur in
both parents.

GOX guarantees to produce valid permutations with repetition while pre-
serving the relative order of operations within both parents as far as possible.
A chromosome represents a unique schedule, but the opposite does not hold.
In general, every schedule can be represented by more than one chromosome.
Thus, the symbolic representation contains some redundancy, although its
amount is considerably smaller than for the binary coding described earlier
in this section.

In order to improve the solution quality, Fang et al. (1993) as well as
Bierwirth (1995) engage a hybrid decoding procedure. Both approaches use
the G&T algorithm for schedule building. The G&T algorithm reduces the set
of schedulable operations to a subset of operations leading to an active sched-
ule. The operation which occurs at the left most position in the chromosome
is selected from this subset. After scheduling this operation the corresponding
job identifier is deleted in the chromosome. Hence, operations are typically
scheduled from left to right. Whenever scheduling an operation would lead
to a non-active schedule, it is skipped and the next operation on the right is
attempted to be scheduled. This procedure leads to a further increase of re-
dundancy in the representation, because now even more permutations lead to
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the same schedule. After the schedule is built, its actual shape is transformed
back into its genotype.

To summarize, genetic inheritance of this symbolic representation aims to
preserve the relative orderings of operations. The crossover procedure sup-
ports the preservation of operation orders. The decoding performs operation
sequencing with respect to the gene order in the chromosome. Fang et al.
obtain a solution quality of 960 for the mt10 whereas Bierwirth achieves the
quasi-optimal 936. Fang et al. use a uniform crossover whereas Bierwirth uses
the GOX operator. Since Bierwirth achieves even better results with 10000
genotype evaluations than Fang et al. with 150000 evaluations, we expect
GOX to be superior compared to uniform crossover for the JSP.

Schedule Representation. A schedule can either be represented by using
the starting times or the completion times of operations as allele values.
The coding consists of a chromosome of the length equal to the number of
operations. Each operation has a fixed locus carrying either its starting- or
completion time. Literature reports two related approaches.

Yamada and Nakano (1992) store the completion times of operations in
the chromosome. They propose the G&T crossover which ensures the assem-
bling of valid offspring. G&T crossover starts with an empty schedule and
passes one stage for each operation. In each stage the G&T algorithm builds
the conflict set of schedulable operations. Now, one parent is chosen at ran-
dom. The earliest completed operation reported in the parental chromosome
which is member of the conflict set is chosen to be scheduled next. By re-
peating this step for all operations, a uniform crossover is performed which
results in an active schedule.

Dorndorf and Pesch (1993) propose a similar approach in which standard
crossover mixes up the starting times of operations of two parental schedules.
Obviously, resulting offspring represent infeasible solutions in most cases.
Therefore Dorndorf and Pesch apply the G&T algorithm in the decoding
procedure in order to obtain a feasible active schedule. In each stage of the
G&T algorithm the operation from the conflict set is chosen, which possesses
a minimal starting time in the chromosome.

Both approaches show apparent similarities. In fact, both algorithms are
driven by random decisions within the crossover procedure. Yamada and
Nakano could also use a uniform crossover resulting in an invalid chromosome
and apply the G&T algorithm while decoding it. This strategy or applying
G&T crossover leads to identical results. Seemingly, the G&T crossover ap-
pears as a heuristic crossover but it rather is a repair procedure. In both
approaches the parental chromosomes are used for rearranging the order of
operations in the offspring close to the order of operations in the parents.
The GA emerges deviations of starting times which are taken as hints for
operation sequences. Both approaches are able to solve the mt10 problem
to optimality. Yamada and Nakano found the optimum 930 in four times
of 600 runs. Dorndorf and Pesch engage an effective Variable Depth Search



74 5. Perspectives on Adaptive Scheduling

procedure (compare Sect. 3.3.4) as a base heuristic in addition to the G&T
algorithm and obtain 930 too.

5.1.4 Which Representation Fits Best?

Since the GA is a stochastic algorithm, it produces different results in different
runs. Hence, we may be either interested in the best result or in the mean
result of a number of runs. For the latter criterion the measured variance is
of particular interest. The results reported in literature are not sufficiently
clear at this point in order to evaluate the various approaches. Just to give a
qualitative impression of the various representations and hybridizations used,
Tab. 5.1 lists the best makespan obtained for the famous mt problems.

Table 5.1. Best results obtained by the GA approaches described throughout this
section for the two famous benchmarks mt10 and mt20.

mt10 mt20 representation hybridization reference
960 1249 priority rule Giffler&Thompson Dorndorf and Pesch (1995)
938 1178 mach. insertions Branch&Bound Dorndorf and Pesch (1995)
954 1180 processing time Giffler&Thompson Storer et al. (1993)

965 1215 binary semi-active sched. Nakano and Yamada (1991)
949 1189 permutation active scheduling  Fang et al. (1993)
936 1183 permutation active scheduling  Bierwirth (1995)

930 1184 completion time Giffler&Thompson Yamada and Nakano (1992)
930 1165 starting time Var. Depth Search Dorndorf and Pesch (1993)

In order to benefit from previous GA approaches, we discuss some gen-
eral aspects concerning the hybridization, extensibility, representation, and
recombination used in the approaches of this section.

— Most GA approaches are tested with small and moderate sized problems
only. Therefore we can only guess how the algorithms scale up to larger
problems. It can be assumed that the time complexity of the base heuris-
tic to be of particular importance for the runtime demand of the GA. A
powerful base heuristics may be computational prohibitive.

— The extensibility to related problems and objectives is of particular interest
when comparing GA approaches. If e.g. a coding relies on a specific base
heuristic, it may be difficult to adopt the approach to a related problem.
A representation which confines itself to the essentials of a problem might
be more easy to adopt. We regard the order of operations to be at least
one important essential in genetic scheduling.

— The success of a GA strongly depends on how well the coding respects the
properties of the underlying problem. Here, the most natural representation
known should be chosen. Since all approaches finally represent sequences of
operations, a symbolic representation may describe the ordering constraints
of the problem in a most natural way.
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— Solutions should be recombined such that already evolved fit schemata
are inherited. Since we cannot identify building blocks in advance, we can
only conjecture which kind of crossover operator performs best. Obviously,
hybridization distorts the crossover properties. Nevertheless, for ordering
problems the order of genes should be respected by crossover.

We view a JSP as a combinatorial ordering problem. Consequently, a
configuration of the search space by means of an order based representation
seems appropriate. Therefore we assume a permutation of operations to be a
natural coding for the JSP. We emphasize the simplicity of the decoding pro-
cedure required: In the most simple version, the decoding procedure straight-
forwardly schedules operations coded in the chromosome in a temporal order
and finally results in a semi-active schedule. This decoding procedure allows
us to run the GA without any heuristic knowledge involved. Therefore we can
assess the intrinsic properties of the coding independently of the distortions
caused by heuristic knowledge involved.

Some design principles of chromosomal representations are given by
Radcliff (1991). He states that ideally each member of the space being
searched should be represented by only one chromosome in the permuta-
tion space. As noted earlier, the symbolic representation comes along with a
considerable degree of freedom concerning the order of operations.

1. Certain sequences of operations result in infeasible schedules. Therefore
the decoding procedure solves these conflicts by altering machine se-
quences. Consequently, the order of conflicting operations in the chro-
mosome carries no meaningful information.

2. Operations which are not connected in the graph representation are unre-
lated. They can be scheduled independently always resulting in the same
schedule. Again, the relative order of such operations in the chromosome
does not obey to some meaningful order.

In order to avoid 1.) we engage a permutation of job identifiers instead of
using the permutation of operations directly. We circumvent 2.) by arranging
the operations in the order of ascending starting times. By using the order
of starting times the topological sorting of the acyclic graph is preserved and
unrelated operations appear in the order of increasing time. All-together, this
mixture of a symbolic- and a schedule representation allows a direct mapping
of the chromosomal representation to a solution.

5.2 Properties of the Search Space

The definition of the problem representation implicitly lays down a proximity
relation between the various solutions of the solution space. We have defined
a JSP representation which is based on precedence relations between any of
two operations. Thus, all solutions of the solution space are configured in a
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way that two solutions are neighbored if they differ in one precedence relation.
The precedence relations specified for a solution are called characteristics in
the following.

First, an overall picture of the search space is sketched in terms of the
fitness landscape. Then, a distance metric is introduced for the search space
permitting a configuration space analysis. Next, we suggest a measure for
the genotypical diversity within a population. Finally, the smoothness of the
fitness landscape is determined. In several experiments! we analyze the prop-
erties of the induced search space configuration in order to evaluate the per-
spectives of the chosen JSP representation for genetic adaptation.

5.2.1 Fitness Landscape

The notion of the fitness landscape was introduced by the biologist Sewall
Wright in the early thirties of this century under the name adaptive land-
scape. His basic idea is to view a genotype space of a species as a landscape,
where related genotypes occupy nearby locations. The fitness of all mem-
bers of the genotype space is forming a surface called the fitness landscape.
Since the fitness of genotypes within a proximity is closely related, the fitness
landscape states a model of the genotype space consisting of peaks, valleys,
ridges, plateaus etc. If the evolution of a species is successful, its individuals
adapt to regions of higher fitness within the fitness landscape.

Concerning combinatorial optimization problems, the objective function
and the search space configuration define the fitness landscape. Any solution
is located through its genotypical coordinates and its objective function value,
i.e. its fitness, in the landscape. Unfortunately, a complete enumeration of a
problem’s search space is necessary in order to depict the fitness landscape
entirely. Even more intricate is the definition of a genotypical coordinate
system which expresses the configuration space. In order to achieve a fitness
landscape we need a problem representation, a metric defining a distance
between instances of the representation, and a fitness function determining
the objective value of solutions.

A fitness landscape may convey insight about general properties of the
problem under consideration. Assume a rugged landscape consisting of many
peaks either connected by ridges or separated by cliffs falling into steep valleys
of low fitness. Such a landscape is regarded to be more difficult to search than
one consisting of a few peaks connected by smooth valleys.

A simple fitness landscape is proposed by Cartwright and Mott (1991)
for an FSP in order to give a clue for a suitable GA parameter setting. The
ruggedness of a problem’s landscape helps to determine the population size
and the mutation rate. In this approach a genotype consists of a sequence

! We report the results for the famous mt10 problem, compare Chap. 8. The results
presented for the mt10 have been verified by sample for various other benchmark
problems.
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of operations. The landscape is generated by altering a chromosome such
that neighboring points in the landscape differ in one gene position. The
landscapes generated for different problems may look completely different.
The visualization of a fitness landscape may explain the observed GA per-
formance, but a GA parameter tuning based on a visual impression of the
landscape can hardly satisty.

However, we have generated fitness landscapes in analogy to Cartwright
and Mott for several JSPs. A plot for the mt10 problem is presented in
Fig. 5.9. A randomly initialized genotype is altered 50 times in two direc-
tions, shown by the two horizontal coordinates. For instance, a neighbor of
the permutation ’1234’ is given by the permutation ’1423’. Notice, that the
axis of ordinate is reversed such that a peak denotes a high fitness, i.e. a short
makespan. This first impression of the JSP landscape appears not encourag-
ing at all. Moreover, the landscapes generated for other problems look more
or less the same.

— At a first glance the landscape appears rugged because there are numerous
peaks all over the portion of the landscape. Despite the sample of the search
space is tiny, we conjecture numerous local optima distributed all over the
entire configuration space.

— At a second glance we recognize a correlated fitness for neighboring lo-
cations of the landscape, although the extension of correlating locations
seems to be small.
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Fig. 5.9. Portion of the fitness landscape proposed by Cartwright and Mott (1991).
The fitness is given for related chromosomes such that neighboring points differ in
one position of a gene only.
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Notice, that the landscape presented in Fig. 5.9 just reflects a reasonable
operator working on a certain representation. Although a landscape may
appear rugged, the corresponding problem is not necessarily difficult to solve
because there may exist another configuration of the search space which leads
to a much smoother landscape. To the contrary, it may be impossible to find
a configuration of a problem’s solution space resulting in a smooth landscape
(although theoretically it exists). For sure such a problem is difficult to solve
for any algorithm, adaptive ones included.

According to Jones (1995) a landscape should be defined by means of that
operator which predominates the adaptation in order to reflect the actual
opportunities of search. Consequently different representations and different
operators lead to different landscapes. We partially approve this view, but
we object that general properties of a problem exist. These properties makes
for instance the JSP difficult to solve for any algorithm, regardless of the
operator(s) performing the search. We have shown earlier in this chapter
that the various ways of configuring the solution space can be essentially
reduced to the specification of precedence relations among operations.

Therefore we propose a definition of the fitness landscape in terms of
precedence relations among operations. In doing so, e.g. a peak denotes a
solution which cannot be improved by altering a single precedence relation.
We may walk on the landscape by means of the A; Local Search operator,
compare Definition 3.1.1, because it changes exactly one precedence relation
in one step. In the remainder of this section we examine some properties of
the JSP in terms of the fitness landscape.

5.2.2 Distance Metric

According to our first impression the fitness landscape of the JSP is multi-
peaked, i.e. local optima are widely spread all over the landscape. In such
cases near optimal solutions can have vastly dissimilar characteristics. Con-
sequently, adaptation might fail on proliferating suitable characteristics in
the gene pool.

A quantitative description of the search space configuration requires a
metric which defines a computable distance d between any of two solutions
z and y. Such a metric should obey the following conditions:

1. reflexivity, d,, , = 0,
2. symmetry, d, , = d, , and the
3. triangle inequality, d, y +dy . > d; ..

A suitable definition of a JSP search space metric, based on the acyclic
graph representation of solutions, is achieved by a binary mapping of all
disjunctive arcs (precedence relations) into a bit string. According to the
binary representation of Nakano and Yamada (1991), described in Sect. 5.1.3,
each bit of the string denotes whether a certain operation precedes another
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(bit=1) or not (bit=0). In doing so, for instance, the binary mapping of
solutions of a rectangular n x m problem leads to a bit string of length I =
mn(n —1)/2.

The well known Hamming distance serves as a JSP search space metric
because it obviously fulfills the above conditions. The absolute Hamming
distance d, , between two bit strings = and y is determined by

l
dyy = ZZEZ R Y (5.4)
i=1

where [ denotes the length of the bit strings and ® denotes the logical XOR
operator. Furthermore D, , denotes the normalized Hamming distance

dy
D,, = Ty (5.5)

Identical bit strings have a normalized distance of D = 0.0 whereas maxi-
mally differing bit strings have a distance of D = 1.0. Consequently, we might
expect a mean normalized Hamming distance of D = 0.5 for the elements
of the search space. But actually our expectation fails. 1000 randomly gen-
erated solutions of the mt10 show a mean normalized distance of D = 0.27
only. The maximal observed distance is D = 0.4. The value of 1.0 appears to
be a theoretical upper bound which may be approximated only under spe-
cific circumstances, e.g. under flow shop restrictions. The above observation
is explained by the heterogeneity of technological job constraints involved in
the mt10 problem instance.

For an example take a look at the symbolic representation of Fig. 5.4.
Operation 6 is the last operation of its job. An operation sequence where
operation 4 or 5 succeeds operation 6 is therefore permitted. Operation 1
is the first operation of its job and is processed on the same machine as
operation 6. If operation 1 succeeds operation 6, then the job of operation 6
is entirely completed before processing of the job containing operation 1 can
be started. Therefore it is unlikely that operation 6 precedes operation 1 in
randomly generated operation sequences.

Since precedence relations of operations and not Hamiltonian paths are
represented in the binary mapping, we achieve a lower mean distance as we
might have expected. This result gives an additional hint at the high degree
of redundancy of the binary representation. However, the binary mapping
of precedence relations among operations allows us to obtain the distance
between two solutions in an easy way.

5.2.3 Configuration Space Analysis

The following investigation of the JSP search space is based on the con-
figuration space analysis as suggested by Kirkpatrick and Toulouse (1985)
for the TSP. In the meantime this analysis is widely accepted, compare e.g.
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Miihlenbein (1990) or Inayoshi and Manderick (1994). Two solution pools R
and £, containing randomly generated solutions and local optimal solutions?
respectively, are generated. For both pools the mean normalized Hamming
distance of solutions to all other solutions of their pool are calculated. The dis-
tance values are plotted together with the fitness values in a two-dimensional
distance/fitness diagram.

The resulting plot ideally shows two distinct clusters. The solutions of R
show a low fitness and their distances are widely spread. The local optimal
solutions of £ come up with a far better fitness while their distances are con-
siderably smaller. If we extrapolate the correlation of both clusters towards
the region of near optimal fitness, then the following model of plausibility
can be stated for genetic search.

1. The mean distances between solutions decrease while their mean fitness
increase. Thus, the characteristics of near optimal solutions might at least
partially be included in the genotypes of local optimal solutions.

2. Therefore the probability to obtain improved solutions by recombining
relatively fit solutions is higher than that for randomly picked solutions.

3. A fitness based selection will guide genetic search into regions of higher
fitness. It appears unlikely that selection excludes near optimal regions
of the fitness landscape from being searched.

This model of plausibility clearly contradicts our impression of a JSP
search space where local optima are widely spread, compare Fig. 5.9. In order
to valuate the model for the JSP we perform a configuration space analysis
for the mt10. We set up the pools R and £ with 1000 random solutions and
1000 local optimal solutions respectively. The solutions of £ are obtained
using the Local Search neighborhood A (see Definition 3.1.4) and the steep-
est descending control strategy (see Tab. 3.3). This hill climbing procedure
produces the best results of all hill climbers tested, compare Tab. 3.4. The
mean fitness of R is 1730.8, whereas £ shows a mean fitness of 1149.3. For
each solution of a pool a mean distance value is calculated by the normalized
Hamming distance to all other solutions of its pool.

The results obtained are presented in Fig. 5.10. It can be seen that Local
Search improves the fitness significantly. The average distance in £ is D =
0.25 which is slightly smaller than the value for R, already calculated in the
last section with D = 0.27. Nevertheless, the width of both clusters is hardly
different. The fitness/distance diagram apparently shows a much too low
correlation to explain how successful genetic search may work for the JSP.
The only conclusion we may draw is that local optima typically share just a
few characteristics. This confirms our conjecture that the fitness landscape
of the JSP is multi-peaked.

% Local optimal solutions are considered simply as good solutions, the property of
a local optimum is of no meaning in this context.
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Although multi-peaked landscapes are not well suited for genetic search,
Kauffman (1993) has shown that recombination is worth its effort if two
properties concerning the fitness landscape hold.

1. There is a Massif Central (in analogy to the Alps) where many near
optimal solutions reside laying closer together than other local optima.

2. The better optima drain larger basins of attraction; that is, the better
optima can be climbed to via adaptive walks from a greater volume of
the search space than can mediocre local optima.

Since we know (at least) one global optimum of the mt10 problem we
measure the distance between each solution of £ and the global optimum. In
doing so we figure out whether near optimal solutions share a considerable
amount of solution characteristics with an optimal solution.

Figure 5.11 shows the normalized Hamming distances between solutions
of £ and the global optimum of the mt10 problem. By looking at the fitness
in £, a funnel-shaped distribution of points can be recognized. Near optimal
solutions show a significantly shorter distance to the global optimum than
solutions of average quality. We conclude that near optimal solutions lay close
together, i.e. there is a Massif Central in the fitness landscape of the mt10.
Solutions of mediocre fitness have a distance to the global optimum similar
to random solutions of R.

Next, we attempt to estimate the basins of attraction of local optima.
Starting from a random solution we count the N; moves performed by the
hill climber until a local optimum is reached. In doing so, we assume the
number of performed moves to measure the basin of attraction of the local
optimum obtained.

Figure 5.12 shows the results obtained in 1000 runs. The number of per-
formed moves obviously shows an influence on the fitness gained. It can be
seen that a fitness better than 1050 requires at least 18 moves. As one would
expect, a larger number of moves produces a solution of better fitness in av-
erage. Vice versa, if a large sequence of moves is necessary to reach a local
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optimum, we conjecture that this solution can be reached from many other
points of the search space too. Therefore we conjecture that near optimal
solutions drain larger basins than local optima of mediocre quality.

Summarizing, we have verified that a JSP may have a large number of
local optima which hardly share solution characteristics. This results in a
difficult to search multi-peaked fitness landscape. In spite of this observa-
tion, recombination may aid search because many near optimal solutions are
closely related and drain comparably large basins of attraction.

5.2.4 Population Entropy

We now define a numerical measure for the genotypical diversity of a
population. Therefore we define the entropy for the JSP in analogy to
Grefenstette (1987) for the TSP and to Fleurent and Ferland (1994) for the
QAP. The entropy of a population is achieved by counting solution charac-
teristics in a population.

— For the TSP edges in a tour are considered as characteristics.
— For the QAP assignments of units to locations are characteristics.

We suggest a definition of the entropy which is based on the frequency of
arcs in the Hamiltonian paths® of machines. The entropy E is calculated in
three steps.

5 = e 2 (0 = () 5

1 n
E, = - y .
y nZEJ (5.7)
j=1
1 m
E = —N E 5.8
m; (5.8)

In (5.6) we calculate the entropy E;; for each single operation. Here, j
calls the job identifier and i calls the destination machine of the operation.
The frequency in the population of processing a job k immediately after job
j on machine i is denoted by w;;r. Thus, the ratio =& gives the relative
frequency of one Hamiltonian arc in a population of size p. Multiplying this
ratio by its logarithm leads to a negative value € which is close to zero either

3 Recall Fig. 2.4 in order to clarify the difference between the representation by
precedence relations of operations (given by §;) and the representation by Hamil-
tonian paths (given by #;) for machine 7. A machine selection S; is defined by
n(n —1)/2 disjunctive arcs, whereas the Hamiltonian selection #; is defined by
only n—1 of them. In the following the disjunctive arcs of a Hamiltonian selection
are referred to as Hamiltonian arcs.
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if the referred arc hardly occurs in the population or if the arc is observed in
almost every solution. Both cases indicate a partial similarity of the various
solutions within a population. For job j we now we sum up the 8 values for
those arcs whose target belong to some other job k. The resulting sum is
finally multiplied by ﬁ normalizing E;; to the range [0,1]. Equation
(5.7) defines the entropy E; of machine i as the average value of all E;;.
Finally the entropy E of a population is obtained in (5.8). A value of E = 0.0
indicates a population of identical solutions, i.e. exactly m(n — 1) arcs occur.
A value of E = 1.0 can be reached if and only if all mn(n — 1) arcs occur
with identical frequency in a population.

solution TSP QAP Table 5.2. Entropy within populations of random-
random 1.00 0.99 and local opt. solutions for the TSP and the QAP.
local opt.  0.32 0.97

Based on the work of Fleurent and Ferland, Taillard (1994) measures an
entropy of approximately 1.0 for a large population of randomly generated
QAP solutions. After running a hill climber on all solutions of the population,
an entropy of 0.97 is measured. Hill climbing hardly reduces the diversity
of the gene pool. Obviously, the local optima of a QAP are widely spread
throughout the entire search space. For the TSP, Grefenstette initializes a GA
with a population of local optimal solutions. Here, we observe an entropy of
approximately 0.32 (taken from a plot) which is in accordance with the results
of Miihlenbein (1990). He conjectures that the average difference between
two arbitrary 2-opt tours is 1/3¢, where ¢ denotes the number of cities. For
the TSP the local optima are within a vicinity in the search space because
approximately 2/3 of the edges are identical in arbitrary local optimal tours.

The results presented lack comparability, since the problems as well as the
hill climbing techniques differ from each other. However, the result shown in
Tab. 5.2 gives a hint on the usefulness of proliferating characteristics of local
optima in the gene pool. This makes sense for the TSP, but for the QAP this
approach seems to be less fruitful.

For the JSP we expect a high diversity for a randomly generated popu-
lation (e.g. the solution pool R) as well as for a population of local optima
(e.g. the pool £) by taking the results presented in Fig. 5.10 into account.

problem  solution fitness entropy Table 5.3. Average fitness and en-
JSP random 1730.8 0.848 tropy of 10000 solutions for the

local opt. 1149.3 0.813 JSP and FSP variant of mt10.
FSP random 2371.6 0.998

local opt. 1332.9 0.997
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Fig. 5.13. Relative frequency of Hamiltonian arcs in random- and local optimal
solutions. The arcs are sorted according to their frequency of occurrence.

The upper line of Tab. 5.3 shows the mean fitness values and the entropy
obtained for the solutions pools R and £ of the mt10, compare Sect. 5.2.3.
The entropy of a random population is £ ~ 0.85, hence we assume that
roughly 15% of Hamiltonian path constellations lead to infeasible solutions.
Although hill climbing impressively improves the solution quality, the entropy
is hardly reduced. That means, Local Search cannot substantially proliferate
preferable arcs of high quality solutions.

In order to make these results more transparent, we construct an FSP
variant of the mt 10 problem such that the processing times for the operations
are taken from the mt10 problem. The machine assignments of operations are
modified from the original problem such that the h-th operation of job j has
to be processed on machine h. For an FSP the machine sequences can be
scheduled independently, thus we expect a uniformly distributed frequency
of arcs in a random pool, see the lower line of Tab. 5.3. The entropy of £ =~ 1.0
indicates that nearly all disjunctive arcs occur with identical frequency. Again
hill climbing improves the solution quality, and again the population entropy
is hardly changed, this time even less than for the JSP.

We are interested in the distribution of arcs among the four FSP and
JSP pools. Therefore we determine the frequency of arcs within the 10000
solutions of each pool. For the JSP as well as for the FSP a maximum of 900
arcs may theoretically occur. The frequency of arcs is determined for each
pool separately and the arcs observed are sorted according to their relative
frequency. A value of 1.0 for some arc means that it occurs in all solutions.

The results obtained are shown in Fig. 5.13. Since the FSP variant of
the mt10 problem comes up with the expected frequencies, we start with the
discussion of the FSP plot on the right side of the figure. The frequency of
Hamiltonian arcs in random solutions is uniformly distributed, each arc oc-
curs in roughly 10% of the solutions. The arc frequencies of local optimal
solutions are displayed bottom up in black shading. The proliferation vs.
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dwindle of arcs is negligible. The left side of the figure shows the arc frequen-
cies for the JSP. The most striking difference between the JSP and the FSP
is the distribution of arc frequencies. Again the deviations of arc frequencies
between random- and local optimal solutions are insignificant. It can be seen
clearly that a few arcs occur in almost every random- as well as in every local
optimal solution. Beside, other arcs do not occur at all; even not in 10000
randomly generated solutions!

The explanation for this phenomenon has already given by example in
Sect. 5.2.2. Consider again two operations to be processed on the same ma-
chine. A constellation which cannot appear for the FSP is, that one of them
is the first operation of a job and the other one is the last operation of some
other job. Although we can construct such a schedule by hand, where the
latter is scheduled directly before the former operation, it is rather unlikely
to generate it at random.

Be aware that the arc distribution presented follows the inherent prop-
erties of the underlying combinatorial optimization problem. Thus, they are
not due to a genetic representation whatsoever it may be. In other combi-
natorial domains we face different situations. E.g. for the TSP Hamiltonian
arcs and their genetic representation stand in a 1:1 relation. Moreover, it is
shown that Local Search strongly decreases the population entropy, compare
Tab. 5.2. Obviously, both aspects simplify genetic search considerably.

5.2.5 Fragile Arcs

The frequency distribution of Hamiltonian arcs has a strong influence on the
schema sampling properties of a GA. In the following we differentiate between
robust Hamiltonian arcs occurring frequently and fragile Hamiltonian arcs
which occur rarely. We are concerned about the rare occurrence of some
arcs, because we expect these fragile arcs to be destroyed easily by genetic
operators. But, even if a robust arc has a low fitness contribution, genetic
operators will hardly drive it out from the gene pool.

We now ask whether a fragile arc can be of eminent importance in order to
obtain the optimum of a problem. If the answer is yes, how can genetic adap-
tation preserve such an arc against the majority of more robust ones? This
question is of interest if we identify at least one Hamiltonian arc to be fragile
and which is involved in an optimal solution. This question is subject to the
following experiment. Brucker et al. (1994) have made an interesting obser-
vation concerning their B&B algorithm. It solves the notorious mt10 problem
to optimality in about 20 minutes. But using a slightly different branching
scheme, the B&B requires several hours to obtain the optimum. Brucker et
al. have noticed that one arc connecting operations 57 and operation 22 on
machine 1 is of particular importance.

We are interested in finding out if the mentioned arc is a fragile one and
therefore we count its occurrence in the pools R and L. Table 5.4 shows the
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solution arc frequency Table 5.4. For the mt10 problem the arc
(57,22) 65 (57,22) is of eminent importance for reach-
random (22,57) 1174 ing the optimum. The table shows its ob-
— 8761 served frequency in 10000 solutions.
(57,22) 57
local opt. | (22,57) 1382
8561

results obtained. The frequency of the Hamiltonian arc (57,22) is 65. The
redirected Hamiltonian arc occurs with a frequency of 1174.

In the remaining 8761 solutions the operations 22 and 57 are not directly
connected, i.e. the disjunctive edge is not expressed in the Hamiltonian path
of machine 1. Thus, (57,22) is an extremely fragile arc; its probability of
occurrence in an arbitrary solution is 0.0065%. It is remarkable that this
arc occurs within £ even more rarely, although the deviation from 65 to
57 appears insignificant. But, the redirected arc (22,57) occurs with 1382
significantly more often than in random solutions. Thus we state that hill
climbing tends to destroy a substantial characteristic of optimality.

Now consider a population of 100 individuals. The probability that the
mentioned arc is part of the initial solutions is 0.65%. If we assume the fragile
arc to be part of the initial population at all, we conjecture genetic operators
to destroy the arc very fast. Nevertheless, if a GA converges to optimality,
we must admit that genetic adaptation is able to prevail a fragile arc because
of its superior fitness contribution.

To sum up, the maintenance of solution characteristics by selection is dis-
torted by problem inherent properties, tending to exhibit certain character-
istics, over proportional. Genetic adaptation cannot rely on the maintenance
of the gene pool by Local Search in order to reach the global optimum.

5.2.6 Correlation Length

The fact that local optima are widely spread all over the landscape does not
necessarily imply a rugged landscape, i.e. the existence of cliffs falling into
steep valleys and the like. Since a population can adapt to a smooth landscape
more easily than to a rugged one, we next examine the smoothness of the
mt10 landscape.

Therefore we produce random walks on the fitness landscape. A random
walk of length [ results in a sequence of fitness samples y;(1 < ¢t < 1), inter-
preted as a time series of [ lags. The autocorrelation function for an interval
of length h is estimated by
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Thereby we assume that the landscape is statistically isotropic (@ does
not depend on one particular walk performed) and that the process de-
scribed by the random walk is stationary, compare Weinberger (1990). The
length h* for which the process still shows correlation, is called the corre-
lation length of the fitness landscape. In literature we find different defini-
tions of the correlation length. The definition mainly depends on the oper-
ator used for generating the walk and the general properties of the prob-
lem, compare Weinberger (1990), Lipsitch (1991), Manderick et al. (1991).
For our purpose the most appealing definition of the correlation length h* is
given by Manderick et al. (1991) with Q) = 1/2.

Next we have to define an operator for generating a random walk. The
landscape shown in Fig. 5.9 is generated by altering the position of one oper-
ation in the permutation. This operation changes the absolute order within
a chromosome and is therefore called position based mutation (PBM) intro-
duced by Syswerda (1991). A random walk based on PBM may change more
than one precedence relation of operations at a time. In order to achieve a ran-
dom walk which exchanges exactly one precedence relation from step to step,
we engage the Local Search neighborhood A7, see Definition 3.1.1. Notice,
that an N; walk works directly on the graph representation by exchanging
adjacent operations on the critical path. Therefore an N] step results in a
solution with a Hamming distance d = 1 to its originator solution. Thus we
may use the number of steps h and the Hamming distance d interchangeably
(neglecting that subsequent steps may reverse precedences relations already
reversed before).

The properties of this neighborhood meet our needs almost perfectly,
because an N7 walk performs the smallest possible step size that guarantees
to alter the makespan. Since we assume the landscape to be isotropic, we
start a random walk from an arbitrary picked solution. Then we iteratively
walk to arbitrary N neighbors of the current solution.

For both operators defined we perform a walk of 10000 steps. The results
obtained are shown in Fig. 5.14 for 1 < h < 50. The PBM walk shows a
small correlation length of A* = 10. The correlation length of the Aj walk
is with h* = 25 considerably larger. Since one N; step changes exactly one
precedence relation, we assume an offspring to correlate with its parent if less
than 25 precedence relations are changed. Since solutions of the mt10 differ
in maximal 450 precedence relations, we assume points in the landscape with
a normalized Hamming distance of D = 0.06 to correlate with one another.

For different problem instances the correlation length may differ with
respect to the problem size. The amount of change an operator produces
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(i.e. the absolute Hamming distance between the offspring solution and the
originator solution) is fixed regardless of the size of the problem instance. In
contradistinction, the normalized Hamming distance an operator produces
becomes smaller with increasing problem size — and so does the deviation of
the objective value. A small deviation of the objective value in turn results
in a big correlation length. Therefore larger problem instances often show a
bigger correlation length than smaller instances do.

Be aware that the correlation lengths for different combinatorial prob-
lems are not directly comparable because the operators used for producing
the random walk are not comparable. Nevertheless, the correlation length
gives us a rough impression of the objective value deviation we can expect
when applying a slight modification to an existing solution. For the TSP
Manderick et al. (1991) have observed correlation lengths between h* = 10
and h* = 20 for different mutation operators. Thus, we conjecture the land-
scapes of the TSP and the JSP to be of at least similar smoothness. Since
the correlation length of N; is considerably larger than the one of PBM, we
conjecture the mt10 landscape to be smoother than shown in Fig. 5.9.

By all odds, a comparison of the TSP and the JSP landscapes points
to an important characteristic of the JSP fitness landscape. For the TSP
good local optima are concentrated at some region of the fitness landscape,
compare Fig. 5.2. The way towards this massif from some lower region is
relatively smooth and therefore easy to climb via an adaptive walk.

For the JSP, the local optima are widely spread all over the landscape
by showing a smoothness of the landscape comparable to the one of the
TSP. This observation suggests smooth proximities around the various local
peaks. Therefore we conjecture that a (local) peak of the JSP landscape can
be climbed easily from its vicinity leading to local entrapments in most
cases.
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5.3 Summary of Perspectives

In this chapter we have discussed several configurations of the JSP search
space. Then we have chosen a representation which configures the solution
search space by precedence relations among operations. Finally we have ex-
amined the properties of this configuration exemplary for the famous mt10.

— Based on the distance metric we have analyzed the configuration space.
Various local optima are spread over the entire search space, hence we
deal with a multi-peaked fitness landscape. Multi-peaked landscapes are
generally difficult to search for adaptive search techniques, because the
search process is easily trapped in local optima.

— Next we have evaluated the correlation between the fitness of solutions and
their distances to the optimum. We have found that better local optima
share a bit more characteristics with the optimal solution than mediocre
ones do. In terms of the fitness landscape we find a “Massif Central”.
Moreover, this “Massif Central” can be climbed from a greater volume of
points in the landscape than regions of lower fitness. This observations hold
promise that genetic adaptation may succeed.

— By determining the frequency distribution of characteristics in a randomly
generated gene pool we have seen that the genes are not uniformly dis-
tributed (as one could have expected). Instead, we must differentiate be-
tween robust and fragile solution characteristics. Thus we state that, re-
gardless of their fitness, some portions of the landscape seem inhospitable
and can be searched by particularly adapted individuals only. Other re-
gions of the landscape are much more easy to be searched and therefore
will attract the majority of the population. This fact may heavily distort
the properties of genetic adaptation.

— Finally we have calculated the distance, for which a fitness correlation be-
tween solutions exists. This can be viewed as determining the smoothness
of the fitness landscape. We state that a fitness correlation exists for rela-
tively large distances. This fact is sufficient for a proper population flow on
the fitness landscape. Therefore we expect adaptation to gain significant
improvements.

Figure 5.15 gives an impression of the fitness landscape as it might appear
for genetic adaptation. The landscape is multi-peaked but smooth within its
localities. The properties of climbing a peak from its proximity of lower fitness
are sufficient because a peak differs significantly from its surrounding. To the
contrary, recombining individuals located on different peaks results in a jump
beyond the correlation length of the landscape and will therefore fail in most
cases. Nevertheless, there is a Massif Central where good local optima reside.
Since some regions of the landscape are less viable than others, at least for the
famous mt10 problem we seem to have lost the battle for optimality before
it even started.
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Fig. 5.15. An idealized JSP landscape as it may appear for genetic adaptation
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6. Population Flow in Adaptive Scheduling

Thus far we got an impression of the JSP fitness landscape. Evolutionary
Search aims to guide a population to regions of higher fitness in the landscape
from generation to generation. The adaptation process due to reproduction
and selection can be regarded as a population flow on the fitness landscape.
The control of the population flow is subject of the following considerations.

Figure 6.1 shows an ideal population flow. Snapshots of the population
are made in four distinct generations showing the fitness (x-axis) and the
Hamming distance to the optimal solution (y-axis). The corner in the front
of the plot refers to the optimal solution. The z-axis gives the frequency of
individuals occupying a certain cluster in the landscape. The initial popula-
tion is widely spread among regions of low fitness. Then adaptation draws
the population towards regions of higher fitness and finally the population
converges nearby the optimum.

The success of the population flow mainly depends on the ability to re-
produce the individuals in a convenient way. For these aspects of heredity the
notion ’inheritance management’ is used hereafter. The inheritance manage-
ment covers the genetic representation, the way of initializing a population
and the genetic operators as well as their probabilities of being applied. Up
to now we have merely defined a suitable representation for the JSP.

Provided that the inheritance management is completely described, the
population flow is furthermore controlled by the 'population management’.
The population management covers the population size, the termination cri-
terion, the selection scheme and the fitness evaluation procedure, including
an optional hybridization method. Their shaping has to be chosen carefully
in a way that the population control interacts properly with the inheritance
management. The components of the population management balance the
degree of exploration vs. exploitation of the adaptation process.

This chapter starts with a discussion of a simple GA template. Next,
asexual and sexual reproduction operators are discussed and evaluated sep-
arately. Then, an appropriate population management for the chosen inher-
itance management is discussed. Finally, results of adaptive scheduling are
presented for a genuine GA and a hybrid GA.
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Fig. 6.1. Population flow on the mt10 landscape. The horizontal extensions give
the fitness and the Hamming distance to the optimal solution. The height of the
peaks correspond to the frequency of individuals occupying a certain cluster. The
corner in the front refers to the global optimum of the problem.
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6.1 Genetic Algorithm Template

In the following we discuss a GA template adopted from the rough outline
of Holland’s reproductive plan (compare Fig. 4.1). Although various other
ways of modeling the population management have been proposed, e.g. by
Whitley (1989) and Miihlenbein and Schlierkamp-Voosen (1994), we follow
Goldberg (1989) in the outline of the algorithmic template.

algorithm GA is
initialize P randomly
while not terminate do
F := evaluate(P)
P =0
while |P'| < |P| do
i = selectr (P)
if randynir < po then
j :=selectp(P)
k := crossover(i, j)
else
k:=1
end if
if randynir < pm then
k := mutate(k)

end if

P :=PU {k}
end while
P:=P

end while
end algorithm

Fig. 6.2. Simple Genetic Algorithm template.

Figure 6.2 shows the algorithmic template. In the beginning the popula-
tion P is initialized with randomly generated individuals. A generation-loop
is performed as long as the termination criterion does not hold. In each gener-
ation the fitness F' of individuals in P is evaluated. A temporary population
P’ is initialized empty and afterwards filled on the basis of P in the inner
population-loop of the algorithm. When P’ is full, it replaces P in the next
generation. Using the temporary population P’, a so called generation gap is
introduced. Offspring are placed in P’ and therefore cannot be selected for
reproduction in the current generation. This feature guarantees an identical
selection environment for all individuals of a population.

Inside the population-loop an individual i is selected from P based on F,
such that preferably individuals of above average fitness are selected. Then,
crossover is applied with the rate p.. If crossover is performed, a mate j is
selected for 7. Crossover recombines i and j producing the offspring k. If
crossover is not performed, i is just copied to k. Now k£ may be mutated with
the rate p,, before it is added to P’.



96 6. Population Flow in Adaptive Scheduling

6.2 Inheritance Management

Once introduced the GA template, we may now formulate its components.
Figure 5.11 shows that near optimal solutions share a considerable amount of
characteristics. Thus it seems worthwhile to spend effort on sexual reproduc-
tion. In this section we examine whether crossover is capable to preserve
exploitable problem structure over the generations. In this case it seems
worthwhile to spend effort on sexual recombination. In case that parental
characteristics cannot be preserved adequately, preference should be given to
an asexual reproduction scheme.

6.2.1 Mutation Operators

Due to the GA paradigm, a mutation merely reintroduces genes lost by ac-
cident into the gene pool. In order to spread offspring genes throughout the
population, mutated individuals must survive by means of selection in forth-
coming generations. Therefore mutated offspring should come up with a sim-
ilar fitness compared to their parents.

We conjecture that a slight genotypical modification leads to a slight
deviation of the fitness. Concerning the JSP a slightly modified chromosome
does not necessarily lead to a modified schedule. And even if a modified
schedule is produced, its makespan (i.e. its fitness) may not differ from the
one obtained for the parental schedule, if the modification does not affect the
critical path, compare Sect. 2.1.3.

For scheduling problems Syswerda (1991) notes, that the relative ordering
of genes as well as the position of genes in the permutation chromosome
is meaningful: The relative order of genes determines that an operation is
scheduled before some other operation. The absolute order determines that
if for instance an operation occurs at the back part of the chromosome, this
operation is unlikely to be scheduled early on its machine. Therefore we
propose three mutation operators which differ in respecting the gene order
of the permutation chromosome.

OBM The order based mutation picks two loci in the chromosome at random
and exchanges their alleles.

PBM The position based mutation deletes a randomly picked locus and puts
its allele to a newly inserted locus at an arbitrary position.

SBM The swap based mutation picks one locus at random and exchanges
the alleles with an adjacent locus.

Since the outcome of these mutation operators is uncertain to some extent,
we examine the fitness deviation effect of OBM, PBM and SBM with respect
to the actual schedule modifications. The altering of a schedule is measured
by the Hamming distance d (i.e. the number of differing precedence relations
among operations) between the parent and its offspring.
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In order to measure the fitness deviation between parents and their off-
spring, Manderick et al. (1991) introduce the correlation coefficient for unary
operators. Miihlenbein and Schlierkamp-Voosen (1994) suggest a similar in-
vestigation. We generate [ parents and apply a single mutation to each of
them. The fitness values of parents and offspring are denoted as z; and
y:(1 < t < 1) respectively. The correlation coefficient R, , of the operator
is calculated by

1
1
Covg,y = 72 zt —T)(yr — V)

12 (6.1)
. = = :U —T) .
g l - t

R, = C’m)mvy'
020y

We perform the experiment for the mt10 by generating 10000 solutions
at random. Their fitness is determined, each of them is mutated once and
then the fitness of the offspring is evaluated again.

Table 6.1. Fitness correlation vs. mean Hamming

mutation d R distance of three mutation operators applied to ran-
SBM 0.37 0.99 d o mtation

PBM 414 091 om solutions of the mt10.

OBM 10.28 0.82

The correlation coefficients of the proposed mutation operators are shown
in Tab. 6.1 together with the mean observed Hamming distance. The corre-
lation R = 0.99 for SBM indicates a very slight fitness deviation. Since SBM
changes adjacent operations in the permutation, at most one precedence re-
lation of operations is changed in one mutation. Hence, the distance d = 0.37
expresses that only 37% of the mutations actually have altered a solution.
Thus, SBM mutations cannot substantially affect the adaptation process.

Comparing the mutation operators PBM and OBM, PBM is clearly su-
perior to OBM in producing a slight fitness deviation. PBM changes ap-
proximately 4 precedence relations in one mutation and therefore we observe
R = 0.91. In contradiction, OBM alters roughly 10 precedence relations in
one mutation and therefore it shows an unacceptable R = 0.82. Obviously,
changing the position of one operation in the chromosome produces a slighter
fitness deviation than exchanging the positions of two operations.

Together, PBM may perform considerable long jumps in the landscape,
but it does not jump beyond the correlation length of the landscape. There-
fore we use PBM in the following, but we keep in mind that even PBM can
produce considerable long jumps within the fitness landscape.
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6.2.2 Crossover Operators

We have seen from the experiment presented in Fig. 5.11 that sexual repro-
duction may succeed in spite of a rugged fitness landscape. But still the ques-
tion remains if crossover can preserve favorable characteristics adequately?

Epistasis revisited. In Sect. 4.2 we have emphasized the obstacles arising
from epistasis. Thereby we have differentiated between epistatic effects of
linked loci and fitness contribution effects of epistasis. We have discussed the
permutation representation and suitable crossover operators for the TSP and
the QAP. We now extend these considerations to the JSP in order to work
out the obstacles arising for the design of a suitable crossover operator.

— Since we use a permutation representation for the JSP, we have to deal with
epistatic effects of linked loci. Crossover cannot combine solutions without
partially destroying the parental information because it has to respect the
permutation property. Our representation of the JSP obeys to the same
restrictions pronounced for the TSP and the QAP.

— As shown by the JSP entropy in Tab. 5.3 roughly 15% of arc constellations
are avoided because they lead to infeasible solutions. Since a chromosome
cannot be decoded into a unique feasible solution, the epistatic effect due
to linked loci is even larger than for the TSP and the QAP.

— Crossover has to respect the semantical properties of the underlying prob-
lem. For the TSP the relative order of genes is important whereas the ab-
solute order is meaningless. For the QAP things are the other way round.
Turning to the JSP we have to respect both, the relative order and the
absolute order of genes, compare Sect. 6.2.1.

— In Sect. 4.2.2 we have examined the fitness contribution effects of epistasis.
Thereby we have determined the number of linked genes which directly
influence the fitness contribution of a single gene. For the TSP we have
seen that the fitness contribution of each city depends on two other cities
whereas for the QAP the fitness contribution of one unit may depend on
the location of all other units in extreme cases. For the JSP the fitness
contribution of a single operation depends on the predecessors and succes-
sors of both, its job and its machine. Hence at most four other operations
directly influence the fitness contribution of a single operation.

To sum up, the assembling of an offspring from parental characteristics is
more or less distorted by epistatic effects. On the genotypical level the combi-
nation of genes may cause implicit mutations. While decoding the genotype,
the effect of crossover may be lost in order to avoid infeasible phenotypes. Fi-
nally the fitness is derived from the phenotype where the fitness contribution
of a single characteristic depends on the occurrence of other characteristics.
Since we cannot valuate the various epistatic effects in advance, three differ-
ent crossover operators are defined and tested in the following.



6.2 Inheritance Management 99

Definition of Operators. The GOX crossover has been previously pre-
sented in Fig. 5.8. This operator performs syntactically correct for the per-
mutation with repetition representation. Derived from GOX, which tends to
respect the relative order of operations, we propose the generalized position
crossover (GPX), which tends to respect the absolute order of operations.

1. parent 322 2 3111 3 Fig. 6.3. Generalized position

2. parent 1 1732 2 1 %2 3 3 crossover (GPX) in compari-
son to GOX.

GOX offspring 1 3 2 2 2 3 1 1 3

GPX offspring 1 3 2 2 3 1 2 1 3

Examples of GOX and GPX operations are given in Fig. 6.3. Recall that
GOX implants a donator’s substring at the position where the first operation
of the substring has occured (before deletion) in the receiver. Hereby the first
operation of the donator’s substring is placed at its corresponding position
in the receiver at the expense of neglecting the positions of the remainder
operations in the substring. Therefore GOX performs well only if chromo-
somes of similar characteristics are crossed. GPX implants a substring in the
receiver at that position where it occurs in the donator. The absolute order
within the donator’s substring is respected by neglecting the relative order of
operations. GPX is assumed to outperform GOX when crossing less similar
chromosomes.

The donator’s substring is implanted without modifications whereas the
receiving chromosome is strongly disrupted. In order to inherit the same
amount of characteristics from both parents, the length of the donating sub-
string should be smaller than the receiving string after deletion. We follow
Gorges-Schleuter (1989) in varying the length of the donating substring uni-
formly in the range between 1/3 and 1/2 of the chromosome length.

Additionally we propose a uniform crossover (GUX) which purely re-
spects the absolute order of operations. The offspring chromosome is initial-
ized empty. A parent is chosen at random and the operation at the first
position of the parental chromosome is appended to the offspring. Then this
operation is deleted from both parents. This step is repeated until both parent
strings are empty and the offspring contains all operations involved.

Summing up, all operators proposed recombine offspring by about the
same amount of information of the two parents. Hereby, GOX tends to inherit
the relative order of operations, GUX inherits just positions of operations,
and GPX inherits the absolute order of operations respecting the relative
ordering to some extent.

Operator evaluation. In order to valuate the above defined operators, we
carry out some experiments in the following. We first concentrate on the
properties of inheriting characteristics in terms of precedence relations among
operations. Later, crossover effects on the fitness are taken into account.
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The normalized Hamming distance D is used as a measure of the geno-
typical difference between parents and their offspring. In order to take the
distortions caused by decoding into consideration, we evaluate the difference
between genotypes as shown in Fig. 6.4. First the genotypes are decoded
into the phenotypes of acyclic graphs. Next, a binary mapping of precedence
relations is done for the phenotypes to determine their Hamming distance.
In this way the Hamming distance reflects the characteristics of phenotypes
instead of just considering genotypical information.

‘ genotype 1 ‘%‘ phenotype 1 ‘%‘ binary mapping ‘\

‘ genotype 2 ‘—»‘ phenotype 2 ‘*»‘ binary mapping ‘/

Fig. 6.4. Scheme for the Hamming distance calculation.

Now suppose a crossover operation of two arbitrary parents resulting in
one offspring. Ideally the offspring inherits one half of the genotypical infor-
mation from each parent. In the following experiment the normalized Ham-
ming distance Dp; p» between two randomly generated parents pl and p2 is
measured. Then crossover is performed and the distance of the offspring o to
the first parent D, ;1 and to the second parent D, p» is calculated.

operator  Dpip2 Dop1t Dopz  Dop1+Do p2

Table 6.2. Genotypical

RS B T R
GOX 0.273 0.150 0.152 0.302

Table 6.2 shows the results achieved for 1000 crossover operations carried
out on the mt10 problem. The mean normalized Hamming distance between
two arbitrary solutions is 0.273. For the crossover operators considered we
observe D, 1D, p2. This proofs all operators to inherit the same portion of
parental information to the offspring. For the GUX operator D, p1 + D, po =
Dp1 p2 holds, thus we regard GUX to inherit parental characteristics almost
perfectly. For the remaining operators we observe a sum which is larger than
the distance between both parents, i.e. GPX and even worse GOX introduce
implicit mutations.

Thus far we have examined the recombination of arbitrary solutions. Next,
we are going to find out whether the similarity of parents is of importance
for the success of recombination or if parents can be recombined regardless of
their differences. Furthermore we investigate whether the values of Tab. 6.2
correspond to the fitness deviations of offspring. The experiment is performed
as follows.
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1. We generate pairs of parents p;,p2 such that the normalized Hamming
distance of a pair falls into one of the 11 clustering intervals [Dy, Djt1]
with D; = 0.000, D, = 0.025,...D1; = 0.275. Therefore we generate
p1 randomly, then copy p; to po and finally mutate py iteratively until
it falls into the desired cluster. In this experiment each cluster contains
1000 parental pairs.

2. In order to determine the genotypical correlation between parents and
offspring, we measure the normalized Hamming distance D, 1 for a
parental pair, denoted as z;(1 < ¢ < 1000). Then we produce offspring
by applying crossover to each of the 1000 pairs. The sum of the distances
Dy p1 and D, ;o denotes y; for pair ¢t. For each cluster the correlation
coefficient R, , is calculated by (6.1).

3. We have seen in Sect. 4.2.1 that a purely syntactical view on crossover op-
erators cannot satisfy. Therefore, additionally to the distance correlation
we obtain the fitness correlation. Given the mean fitness x; of parental
solutions we apply crossover to achieve the fitness y; of their offspring.
Analogous to 2.) we calculate the fitness correlation coefficients for each
cluster separately.

Hamming distance
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Fig. 6.5. Preserve of genotypical vs. phenotypical characteristics by crossover.

The experimental results are presented in Fig. 6.5. Let us start with a
description of the distance correlation for GOX, GPX and GUX on the left
side of the figure. Concerning GUX, the distance correlation coefficient is 1.0
in all clusters. This means that exactly half of the genetic information of both
parents is inherited to offspring. The result is in accordance to the data of
Tab. 6.2. GPX performs quite well as long as parents do not differ too much.
The correlation coefficient decreases continuously with an increasing parental
distance. In contrast, GOX offspring do hardly correlate with their parents.

The correlation of the fitness is shown on the right side of Fig. 6.5. Here we
face a completely different situation. In clusters of D < 0.075 all operators
perform more or less similar. For larger distances the fitness coefficient of
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GUX decreases faster than the correlation coefficients of GOX and GPX.
The difference between GPX and GOX is insignificant. It is amazing that
GOX shows a strong fitness correlation while hardly correlating in terms of
the Hamming distance. The dependencies of inherited genetic information
appears to be more complex than we might have expected.

We have proofed the Hamming distance between offspring and parents
to be of almost no importance. Furthermore, we have seen that the fitness
correlation decreases for less similar parents regardless of the recombination
operator used. This fact can be explained by observations reported earlier in
Sect. 5.2. We have seen that numerous local optima are spread all over the
search space. Since the correlation length of the landscape is approximately
0.06 we have conjectured that many good solutions do not correlate with one
another. Although the definition of the correlation length appears somewhat
vague, we can approve this conjecture from Fig. 6.5 implying that solutions
of larger distances cannot be recombined effectively.

Recall, that the mean distance between randomly generated solutions is
about 0.27. Calculating the fitness correlation coefficients based on randomly
generated parents as proposed by Manderick et al. (1991) we obtain R = 0.23
for GUX, R = 0.41 for GOX and R = 0.42 for GPX. These values can be
verified at the right border (argument 0.27) of the right hand side plot of
Fig. 6.5. These coeflicients suggest a very low correlation and therefore imply
to give preference to asexual reproduction. In a GA we have a randomly gen-
erated population at initialization only. There, even long jumps beyond the
correlation length of the operator have a high probability of success, com-
pare Kauffman (1993). Later on in the adaptation process the population
has partially converged by means of selection pressure. Now the probability
of success of recombination increases as shown by the fitness correlation co-
efficients in Fig. 6.5. We now favor sexual recombination because crossover
performs well for partially converged populations. However, we cannot finally
decide if GOX or GPX works best.

Population Mastermind. In a final experiment we are going to deter-
mine the crossover operator of our choice. We setup a GA as sketched in
Fig. 6.2. The experiment has much in common with the well known game
“Mastermind”. One player chooses a permutation of colored pins which is
kept obscured for the second player. The second player attempts to find out
the chosen permutation in a minimal number of trials. After each attempt
the first player reveals the number of pins at the right position but conceals
which pins are the ones scored. The GA considered in the following can be
thought of as playing “Population Mastermind”.

The normalized Hamming distance to the optimal solution is taken as
the measure of fitness and consequently, the objective is to find a solution of
distance D = 0.0. In doing so, the fitness determines how many precedence
relations are set correctly. This fitness measure switches off the epistatic ef-
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fects on the makespan from consideration. Instead, it isolates epistatic effects
caused by linked loci in the representation.

We will give preference to that operator which gains near optimal solutions
by exploiting favorable characteristics while exploring large regions of the
search space at the same time. In order to measure the degree of exploration
we introduce the online performance. This measure is calculated by summing
up the so far obtained fitness of all individuals in all generations and dividing
the sum by the number of evaluations performed. Thereby, a high online
performance denotes a high degree of exploration.

The experiment is performed for GUX, GPX and GOX solving the mt10
problem. We use a population size of 100 individuals and a termination crite-
rion of 350 generations. In each generation the fitness of the best individual,
the average fitness of all individuals and the online performance are recorded.
The results are averaged on the 10 runs performed.
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Fig. 6.6. Average curves of 10 runs each for the mt10 problem performed with
GUX, GPX and GOX. The fitness is the Hamming distance to the optimum.

The results achieved are shown in Fig. 6.6. What immediately strikes is
that the GUX based GA is not able to find a near optimal solution. GUX
adapts too fast to regions of high fitness at the expense of neglecting a thor-
ough exploration of the search space. In later phases of adaptation process the
average fitness does not converge asymptotically to the currently best fitness
gained, i.e. GUX does not recombine even resembling individuals adequately.

The GPX based GA shows a similar dynamic in the early phase of adapta-
tion, but different to GUX, GPX gains further improvements in later phases.
Again, the tendency to exploit characteristics is much higher than the ten-
dency to explore various regions of the search space. In spite of the fast
convergence observed, GPX continuously improves the solution quality. No-
tice, that the fitness measure provides a comparably smooth fitness landscape
which is dominated by a single peak. A high degree of exploration is not nec-
essary in such a landscape, but will be desired when the makespan is used as
the fitness criterion.
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The GOX based GA shows an unexpected dynamic. Although GOX im-
proves considerably slower than GPX, in the end the same level of quality is
reached. Even after 350 generations the average fitness is much higher than
the fitness of the best individual of the population. Compared to GPX and
GUX, GOX maintains the population diversity shown by the high online per-
formance. GOX is able to preserve characteristics of near optimal solutions
and to explore far away regions of the search space at the same time.

To sum up, we assume GPX as well as GOX to inherit building blocks
which are constituted by absolute and relative order dependencies of opera-
tions. In spite of the low distance correlation of GOX, the property to inherit
building blocks are sufficient. For a less rugged fitness landscape GPX would
be an appropriate operator too, but for the JSP the GOX operator is the
crossover of our choice.

6.2.3 Crossover- and Mutation Rate

The crossover rate p. determines the probability of applying crossover to
selected individuals. Analogous, the mutation rate p,, determines the proba-
bility of altering chromosomes by means of mutation. It can be inferred from
Fig. 6.2 that an individual can enter the population of the next generation
by applying neither crossover nor mutation. Together, both rates determine
the likelihood for selected individuals to pass the reproduction without being
modified. The more individuals are just copied to the next generation, the
more adaptation tends to exploit characteristics in the gene pool.

Literature suggests a crossover rate p. = 0.6 which has been proofed to
work well for our purpose too. The mutation rate should be chosen with re-
spect to the rate of implicit mutations caused by the crossover. Since GOX
introduces a considerable amount of implicit mutations, a relatively low mu-
tation rate is sufficient in order to maintain the population diversity. The
mutation rate can either be given as the probability of affecting a certain
individual or as the probability of affecting a certain gene of the gene pool.
Since the crossover rate is given in terms of individuals affected, we determine
the mutation rate in the same scale with p,, = 0.03.

6.3 Population Management

We now turn to the discussion of an appropriate population management.
Concerning the population management we endeavor to use a widely accepted
standard setting because of the following reasons. First, it keeps our imple-
mentation comparable to previous research. Second, we regard the population
management to be of subordinate importance compared to the inheritance
management. Third, we do not assume that conclusions for a general problem
class can be drawn from a population management tuned to the requirements
of a certain problem instance under consideration.
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6.3.1 Population Size

This parameter is regarded to be crucial for GA performance. If the popu-
lation size p is too small, the schema processing feature is virtually disabled
and the GA converges prematurely. In order to obtain a certain level of near-
optimal quality in a prescribed runtime, either a large population size can
be used or the algorithm can be run several times engaging a considerably
smaller population size. The question arises, whether an optimal population
size exists which maximizes the probability of reaching the goal?

A larger population is likely to produce a better solution, but there seems
to be a saturation of the tendency, as noted by Nakano et al. (1994). Ac-
cording to them the probability to reach a certain solution quality with the
population size u follows an exponential dependency, asymptotically converg-
ing to 1 if  tends to infinity. Nakano et al. have tested their theoretical work
with the G&T GA formerly presented in Sect. 5.1.3. They show that an op-
timal population size exists for a problem instance, but no conclusion about
optimal population sizes in general can be drawn.

For our purpose it is sufficient to state that there is a saturation of the
tendency concerning the number of individuals involved. The decoding proce-
dure for the JSP is computational expensive and therefore we should always
take a close look at the tradeoff between an enlargement of the population
size and the (marginal) improvements expected thereby.

6.3.2 Selection Scheme

Selection proliferates building blocks in the gene pool. Therefore building
blocks must be identified by their fitness contribution, compare Sect. 4.2.2.
We see the main obstacle for applying GAs to the JSP successfully in the
fitness contribution of building blocks.

Recall from Sect. 2.1.3, that the fitness of a solution is determined by the
length of the critical path in the acyclic graph. If an operation is touched
by the critical path, its precedence relations to neighboring operations are
potentially unfavorable. Favorable precedence relations of (a few) operations
are regarded to form building blocks. The decoding of such building blocks
does not improve the fitness of a solution as long as the critical path does not
touch operations involved in the building block. Actually, the critical path
potentially avoids operations within building blocks. Instead, the fitness of a
solution is determined by unfavorable precedence relations among operations.

Therefore selection cannot prevail building blocks adequately but will
merely drive out unfavorable characteristics from the gene pool. In terms
of the fitness landscape, the population will flow towards regions of higher
fitness just because regions of lower fitness are avoided. Based upon these
considerations we conjecture a weak selection scheme to result in a tedious
recombination of individuals without gaining substantial improvements. A
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severe selection scheme, which persistently drives out unfavorable character-
istics, seems to be more adequate for the JSP.

In Sect. 4.2.2 we have discussed several selection schemes, in particular
ranking and proportional selection. In our opinion there is no reason to believe
that a sophisticated selection scheme performs better for the JSP.

Therefore we use the well known proportional selection in the following.
Since the objective values of near optimal solutions differ within a small range
only, we scale the fitness f within a population to the range [0, fmax — fmin]-
In doing so, we achieve a more severe selection scheme compared to selection
based upon the original fitness values. As a side effect, the worst individual
is discarded from being selected.

6.3.3 Termination Criterion

At least three termination criterions are proposed in literature. The most
simple one is a static number of generations. A more intricate one is a number
of generations in which no improvement is gained. More flexible termination
criterions are based on diversity tests of the population. For instance, this
can be done by calculating the population entropy, compare Sect.5.2.4. The
GA terminates when the population entropy drops below a given threshold.
We reject flexible termination criterions because of the following reasons.

— In some GA runs the progress of adaptation suddenly stops for a number
of generations at a mediocre level of quality before further substantial
improvements are gained. In other runs for the same problem we observe
a continuously increasing fitness.

— For some problems the gene pool diversity decreases drastically right at
the beginning of the adaptation. Nevertheless, substantial improvements
are gained. For other problems the gene pool diversity remains high for a
large number of generations, although little improvements are found.

In order to achieve comparable runtimes in several runs for the same
problem, we use a static number of generations as the termination criterion.

6.3.4 Local Search Hybridization

Hybrid GAs have been shown to outperform genuine GAs whenever an effi-
cient base heuristic is available, compare e.g. Davis (1991). Hybrid GAs do
not only produce superior results, moreover they achieve these results with
smaller populations and in less generations. In spite of the comparably small
number of fitness evaluations, hybrid GAs are not necessarily faster than gen-
uine GAs because hybridization typically requires a considerable amount of
runtime. However, the degree of hybridization directly influences the setting
of the population management.
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The base heuristic may gain a fitness improvement of the genotype ob-
tained from reproduction. For the JSP, the G&T algorithm is typically in-
corporated in the decoding procedure in order to restrict the search space to
the subset of active schedules. Alternatively, we may apply a Local Search
procedure after decoding in order to reduce the search space to local optimal
solutions.

active scheduling local search scheduling
f fitness landscape

phenotype space

genotype space

Fig. 6.7. Scheme of hybrid fitness evaluation.

Figure 6.7 illustrates the difference between active scheduling and Lo-
cal Search based scheduling in analogy to the model of layers presented
by Schull (1990). The bottom line represents a simplified (one dimensional)
genotype space. The line in the middle represents the phenotype space which
does not necessarily show the same dimensionality than the genotype space.
The decoding maps genotypes to corresponding phenotypes. The fitness of a
phenotype appears as a point in the fitness landscape.

The effect of the G&T algorithm is shown on the left side of Fig. 6.7. It
distorts the mapping of a permutation chromosome (genotype) to its corre-
sponding acyclic graph (phenotypes) by altering the scheduling order of op-
erations while decoding. Then, the makespan (fitness) is determined directly
for the phenotype. Local Search based scheduling is shown on the right side
of the figure. Here, the semi-active decoding just avoids cyclic graphs (infea-
sible phenotypes). The mapping of genotypes to phenotypes is therefore more
direct compared to G&T based decoding. After a phenotype is assembled,
hill climbing transforms the phenotype to a local optimal solution.

Instead of assuring activeness of schedules (like many other GA ap-
proaches, compare Tab. 5.1), we incorporate local hill climbing after semi-
active decoding, compare Fig. 4.5. Based upon our examination of several hill
climbing procedures in Sect. 3.2.3 we engage the A3 neighborhood in com-
bination with the steepest descendent control Cg. This procedure has been
proofed to work efficiently, i.e. to produce good results in a short runtime.
The incorporation of this relatively weak local search procedure into a GA
has certain advantages shown by example for the mt10.

— The proposed hill climber obtains a better average solution quality than
the G&T algorithm (1213 compared to 1265) when running alone. Beside,
the best objective value achieved by the hill climber in 1000 runs (1008) is
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far better than to the one obtained by the G&T algorithm (1088). Thus,
hill climbing is superior to the G&T algorithm in terms of effectiveness.
— The entropy of a population of local optimal solutions is 0.816 whereas
the a population of active solutions shows an entropy of 0.845. Since the
entropy of randomly generated solutions is 0.848 (compare Tab. 5.3), we
regard active schedules to have almost no exploitable problem structure in
common. To the contrary, local optimal solutions share a certain amount of
characteristics, required to obtain a solution of a near optimal makespan.
— The population learns favorable characteristics over time. Therefore the
computational amount of hill climbing will continuously decrease with an
increasing number of generations. To the contrary, active scheduling shows
almost constant computational costs. Thus, using Local Search as the base
heuristic may be even faster than active scheduling in later generations.

To sum up, we expect Local Search hybridization to improve the solution
quality while decreasing the number of evaluations needed. The effect of
hybridization will be investigated in the next section.

6.4 Applying Adaptive Scheduling

Yet everything is prepared well in order to apply GAs to the JSP. In order to
get an impression of the GA performance, we carry out the following exper-
iment. A GA is parameterized as follows: GOX is applied with a crossover
rate of 60%. PBM mutations are carried out at a rate of 3%. A proportional
selection scheme based on the scaled fitness is used. The population size is set
to 100 individuals. Now, two GAs run for a total of 1000 iterations solving
the mt10 problem. The genuine GA runs 100 generations whereas the hybrid
GA runs 50 generations only.

genuine GA hybrid GA
1700 \ ‘ ‘ ‘ ; ; ;
best —
1600 | \ I mean - -
15001 10 worst---- |

fitness

0 10 20 30 40 50 60 70 8 9 100 10 20 30 40 50
generation generation

Fig. 6.8. Adaptation curves for a genuine and a hybrid GA averaged over 1000
runs solving the mt10 problem.
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The adaptation of both GAs is shown in Fig. 6.8. in terms of the best,
mean and worst, fitness of the current generation. The results are averaged
over 1000 runs carried out. The adaptation of the genuine GA, shown on
the left hand side, achieves substantial improvements in the early phase of
the adaptation process. After 50 generations further progress is limited until
the population converges entirely in generation 100 with a fitness of approx-
imately 1080. This result is far better than the average makespan obtained
by the best hill climber (1149) using the intricate Ny neighborhood, compare
Sect. 3.2.3. Notice, that the genuine GA works without any problem specific
knowledge involved whereas the N, /Cy hill climber depends highly on the
problem and objective under consideration.

The adaptation process of the hybrid GA, shown on the right hand side of
Fig. 6.8, converges faster. After about 40 generations it has converged entirely
with a fitness of approximately 960. The hybrid GA starts at a fitness which
is roughly met by the genuine GA after 100 generations.

Table 6.3. Results obtained for a genuine GA and for a hybrid GA from 1000 runs
solving the mt10 problem.

GA pop. gen. best mean err. dev. time® eval’
genuine 100 100 1001 1082.5 16.3 3.6 12.0 1.20
hybrid 100 50 930 960.4 3.2 1.2 17.5 3.50

# Runtime in seconds.
b Evaluation time in milliseconds.

Table 6.3 shows the experimental results in more detail. The hybrid GA
is able to solve the mt10 to the optimum 930 (best) and gains a far better
mean fitness (mean) compared to the genuine GA. The mean relative error
(err.) is computed by

err = 100 - fmean - fknnwn (62)
fknown

where ’known’ is the optimal makespan of 930 for this problem instance. The
relative error of 16.3 for the genuine version can be significantly reduced to
3.2 by the hybrid GA. The standard deviation of the fitness from the mean
fitness in percent (dev.) is 3.6 and 1.2 respectively. Notice the relatively short
runtimes of 12.0 and 17.5 seconds for both versions. Because of hill climbing
the runtime of the hybrid GA increases about 30% using 50% less generations.

The evaluation time in milliseconds (msec) is computed by dividing the
total runtime of the GA by the number of evaluations performed. The CPU
time needed for selection, reproduction and evaluation within the hybrid GA
is 3.5 msec. Since a single evaluation requires 1.2 msec. for the genuine GA,
the additional CPU time needed for hill climbing is roughly 2.3 msec.

Now recall from Tab. 3.6, that a single run of the N3/Cq hill climber
requires 16.8 msec in average. Because of p. = 0.6 used, roughly 40% of the
individuals pass the reproduction without modification and evaluation.
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Subtracting 40% of 16.8 msec. leads to approximately 10 msec. CPU time
for a single hill climb. Actually, the hybrid GA spends only 2.3 msec. for hill
climbing in average. This amazing difference is explained by the observation,
that the population flows towards regions of favorable characteristics in the
fitness landscape, compare Fig. 6.1. Therefore in later stages of adaptation
the number of moves performed by the hill climber decreases strongly.

100

Fig. 6.9. The hill climbing
improvements vs. the move
trials performed given for a
single individual over time.
Mean of 100 runs solving
mt10.

move trials

=
o

improving moves

local search actions

[

0 & 10 15 20 25 30 35 40 45 50
generations

Figure 6.9 confirms the above explanation. Recall from Sect. 3.2 that
the basic outline of the steepest descending control. In order to gain one
successful move, all promising move candidates along the critical path are
evaluated (actually they are estimated). After a successful move the critical
path changes unpredictably and the procedure is repeated until no improving
move can be gained. Figure 6.9 shows the number of move trials and improv-
ing moves performed by individuals in generation 0 up to generation 50. A
randomly generated individual requires a considerable amount of moves in
order to become a local optimum. Over the generations the amount of moves
decreases continuously. After about 25 generations only one improving move
can be performed for a recombined offspring in average.

Up to generation 30 move trials and improving moves decrease at a pro-
portional rate. From then on, typically local optimal solutions are assembled
by crossover. Local optimal solutions cannot be improved by hill climbing
moves. Therefore the number of move candidates (along the critical path)
remain constant at approximately 10 trials whereas the improving moves
further decrease with an increasing number of generations. At this point of
time the computational amount needed for hill climbing is almost negligible.

Figure 6.10 presents the distribution of makespan frequencies obtained by
the hybrid GA. Although the mean fitness of 960 seems to be fairly good, the
observed deviations in 1000 runs appear quite high. Actually the optimum
930 is found two times only. Although the majority of results is better than
980, we observe even some worse results above 1000 units.
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Thus far we have just considered the famous mt10 problem. In order to
valuate the hybrid GA (called GA1 in the following), one single result will
hardly satisfy. Therefore we present the results obtained for a well known
test suite of particularly hard, but medium sized problems. The suite con-
sists of the mt10, the mt20 and another 10 tough problems collected by
Applegate and Cook (1991), all-together listed in Tab. 8.3.

We use the set of parameters described above without further parameters
tuning. Since most of the problems are considerably larger than the mt10,
we merely enhance the number of generations to 100, i.e. in each run 10000
evaluations are carried out. The GA1 runs for a total of 50 iterations on each
of the 12 benchmark problems.

prob. n m known mean err. dev.

mtl0 10 10 930 959.1 3.1 1.2

mt20 20 b) 1165 1181.9 1.5 0.4

abz7 20 15 665 6879 3.1 1.1 Table 6.4. GA1 results ob-
abz8 20 15 670 699.6 4.4 0.8 tained for the mt10, mt20 and
abz9 20 15 686 716.2 3.6 0.7 another 10 tough problems,
la21 15 10 1046 1070.0 23 0.9  see Tab. 8.3

la24 15 10 935 955.9 2.2 0.9

la25 15 10 977 990.0 1.3 0.5

la27 20 10 1235 1265.7 2.5 0.2
1a29 20 10 1153 12121 4.8 14
la38 15 15 1196 1235.2 3.3 1.2
la40 15 15 1222 1258.0 2.9 0.8

Table 6.4 shows the results obtained. Beside the problem name the size
(nxm) and the best known makespan is referred. The last three columns list
the computational results. First, the mean fitness is given. The relative error
is calculated as shown in (6.2). Finally the standard deviation in percent
is calculated for the mean fitness obtained. The mean makespan obtained
differ roughly 30 units from the best known makespan which is proofed to be
optimal for all instances except 1a29. The average of the mean relative error
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over all problems is 2.9, including the problem 1a29 with a mean relative
error of 4.8. The standard deviation of the results obtained in 50 runs is
with an average value of 0.84 pleasantly low. This proofs hybridized genetic
adaptation to be a robust optimization strategy.

Larger problems may require a larger number of evaluations than used
in these computations. Therefore we could have enlarged the population
size in order to reduce the mean fitness and the deviation. But as noted
by Nakano et al. (1994), there is a saturation of the tendency regarding the
improvements obtained by engaging larger population sizes.

Furthermore we could have used a larger number of generations in or-
der to increase the number of evaluations carried out. Comparing the mean
makespan obtained for the mt10 problem in Tab. 6.3 and Tab. 6.4 we ob-
serve an improvement of only 1 unit in makespan, although the number of
generations performed is doubled from 50 to 100.

This observation is not amazing by considering that the population has al-
ready converged at generation 40 in case of the mt10, compare Fig. 6.8. Thus,
a considerably higher mutation rate is needed in order to delay convergence.
Consequently, an even more severe selection scheme is required in order to
keep up selection pressure. Actually such a strategy results in a direction-less
search at a near-optimal level of solution quality. Furthermore, we do not
expect mutations to explore a so far unexplored region of the search space.
Although slightly better results may be gained, the runtime amount needed
in order to find these improved solutions may be enormous. Hence, we confine
the GA1 to 10000 evaluations in order to keep the algorithm fast.

To sum up, the hybrid approach presented is capable of finding near op-
timal solutions considerably fast. Nevertheless it appears doubtful whether
further substantial improvements can be gained by a more sophisticated pa-
rameter setting in the underlying GA template.



7. Adaptation of Structured Populations

So far, we have presupposed a complete dispersion of individuals over a large
(potentially infinite) population. This model assumes, that an individual can
recombine with any other individual of the population. It is referred to as
random mating in the following. Already in the early thirties Sewall Wright
recognized, that random mating is susceptible to local optima in the fit-
ness landscape. Selection reduces the variation in the population by favoring
genotypes located at peaks of the landscape. Once occupying those peaks,
selection prevents the population to escape from there.

We agree with Schull (1990) in arguing that individuals, but not popula-
tions, can be expected to accept short term losses in order to achieve long
term gains. Therefore only single individuals may discover a location “far
away” of similar or even better quality in the landscape. A typically “slow”
move of the population in the direction of such a newly discovered point in
the landscape is called genetic drift. Genetic drift causes a significant change
of gene frequencies in the gene pool triggered by a small fraction of superior,
newly introduced genes.

The predominance of mediocre genes, resulting from the majority of indi-
viduals occupying a small portion of the landscape, prevent newly introduced
genes from being preserved in the gene pool. This phenomenon is reinforced
by epistatic effects of the genetic representation. In this case, individuals can-
not recombine adequately and the offspring of highly fit parents are excluded
from selection because of their typically low fitness.

Fig. 7.1. The population got
stuck in a local optimum of a
minimization problem. How can
this population surmount the
hillside in order to gain the fit-
ness improvement,”

characteristics
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Figure 7.1 illustrates the situation of a population trapped in a local
optimum for a minimization problem. Even if a single individual improves its
fitness significantly by performing a long jump from the valley on the right
over the hilltop, it will be almost impossible to draw the entire population
towards the newly discovered location. Since evolution (i.e. changes of the
gene frequency in a population’s gene pool) is taking place in small moves
within the fitness landscape, the population will hardly surmount the hillside.

Wright suggested that the problem of getting stuck in local optima would
be less acute when a population is divided in “local” sub-populations. There-
fore spatially divided populations are subject of the following considerations.

7.1 Finite and Structured Populations

Random mating is an abstraction for biological populations, where individ-
uals are more likely to mate with their neighbors. The mating of individu-
als is therefore restricted to local recombination among neighbors forming a
sub-population. In a first step we view the various sub-populations as finite
populations of small size. The assumption of finite populations has significant
consequences for the population flow on the fitness landscape, which partially
contradict to each other.

— The individuals within a finite population perform an exploring search in
the fitness landscape because sampling error in small populations increases
the importance of mutation and genetic drift compared to selection. Hence
selection pressure may not sufficiently hold the population at regions of
high fitness in the landscape.

— Evolution in finite populations is very fast compared to evolution in large
(theoretically infinite) populations. Therefore inbreeding occurs early in
the adaptation process. But, promising gene constellations will persist and
spread rapidly in the finite population once they arise.

— The various sub-populations will adapt to different regions of high fitness
in the landscape in parallel. Premature convergence as observed for ran-
dom mating populations is avoided, but inbreeding may lead to genetically
incompatible sub-populations.

In fact, sub-populations are not completely isolated from each other.
Instead a diluted gene flow occurs between the various sub-populations.
Smith (1989) names three different ways of modeling the phenomenon of lim-
ited dispersal in a population. These different models reflect different spatial
density distributions of individuals in a population’s habitat.

— In the island model the population is divided into partially isolated sub-
populations, called demes. The gene flow between demes occurs through a
small fraction of the individuals migrating between the demes. When an
individual does migrate, it is equally likely to move to any other deme.
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— The stepping-stone model introduces a distance between the demes. The
migrants always move to a deme in their proximity. Apart from this prox-
imity relation of demes, this model is identical to the island model. The
island- and the stepping stone model are referred to as migration models.

— In the continuous model there are no demes, but dispersal distances are
short, such that mating individuals were also born in the proximity of one
another. The model depicts a spatially uniform distribution of individuals.
Here, diffusion of genes occurs due to overlapping spatial neighborhoods.
Therefore this model is also referred to as diffusion model.

Each of the three models lead to a structure of the overall population.
The local mating scheme quickly reduces the genotypical diversity in the
various sub-populations. On the other hand a high population diversity is
maintained for the overall population. Thereby a limited number of genes are
continuously exchanged between the sub-populations. Whenever individuals
can be recombined successfully, new highly fit genes are spread out rapidly
within their sub-population.

In the presence of epistasis, genetically incompatible sub-populations
evolve and the overall population cannot converge entirely. We doubt the
usefulness of the migration models in the presence of epistasis. Migrating in-
dividuals cannot recombine successfully in most cases and their offspring will
be excluded from being selected. Therefore we concentrate on the continuous
model hereafter.

7.1.1 Structured Population GAs

Literature reports various attempts of modeling structured populations GAs
(SP-GAs). A comprehensive survey of structured population approaches and
local mating strategies is given in Gorges-Schleuter (1992).

The first approach of a continuous population model within a GA is due to
Miihlenbein et al. (1988). This research has lead to the famous ASPARAGOS
approach of Gorges-Schleuter (1989). This approach is motivated by the
excellent suitability of SP-GAs for a (parallel) transputer hardware. Here,
the population is mapped to a connected grid of processors, such that
each individual resides on one processor. Since a central control of the
algorithm is not needed when using a structured population, a consider-
able speed-up of the parallel implementation can be observed. Due to this
fact SP-GAs are often referred to as 'massively parallel GAs’, compare
Spiessens and Manderick (1991). Meanwhile, the interest in transputer hard-
ware is declining, despite parallel implementations of SP-GAs are still a topic
of research, compare e.g. Stender (1993).

Figure 7.2 shows a population mapped onto a torodial connected grid. A
torus has the advantage of introducing a spatial distance between individuals
by avoiding border locations. In the exemplary illustration each individual
has four neighbors located to its east, north, west and south. This spatial
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Fig. 7.2. A structured population on a
torodial grid avoids border locations. The
overlapping sub-populations consist of five
individuals each.

structure can be seen as an artificial habitat in which mating is restricted
to overlapping neighborhoods. A population structure as well as a suitable
definition of the local mating scheme has to be chosen in a way such that a
sufficient gene flow through the population and a sufficient spatial distance
between the individuals is “well balanced”.

Whenever hybridization is incorporated into a GA, smaller population
sizes are needed. A torodial population structure comes up with a maximal
distance between the individuals of 8 = [1/(u/2)] for the population size
. This means, that it will take at least 3 generations to spread a newly
introduced gene throughout the entire population. In populations of small
size, this distance might not be sufficient in order to separate the individuals
adequately from each other. Therefore Gorges-Schleuter (1989) proposes a
ladder-structured population in order to provide larger 8 for a given p than
the § achieved by a torodial structure. A ladder shows a considerable larger
B = /4] + 1. At the extreme a ring provides a maximal 8 = |u/2].

Both, the mating scheme and the population structure determine the
degree of dispersal within a population. Davidor (1991) suggests a torodial
structure with a neighborhood size of eight by also including the individuals
in the north-east, north-west, south-east and south-west. Additionally to this
eight-individual neighborhood Collins and Jefferson (1991) simulate a more
realistic mating process. They let an individual perform a random walk of
a few steps on the torodial grid in order to find an appropriate mate. Both
approaches increase the dispersal within the population which in turn requires
larger population sizes in order to provide sufficient spatial distances between
the various neighborhoods of the habitat.

There may exist an optimal mating scheme/population structure for a
fixed population size and a problem under consideration. However, an optimal
population structure appears to be highly problem dependent because the
gene flow through the habitat strongly depends on the individuals ability to
recombine themselves successfully.
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7.1.2 Incorporating the Diffusion Model

In order to compare the performance of an SP-GA with the GA1 presented in
Chap. 6, we use the same inheritance management (representation, crossover
and mutation) as given in Sect. 6.2. Here, we skip evaluation of a genuine
SP-GA variant and turn to a hybridized SP-GA directly. This approach is
referred to as GA2 in the following.

We confine ourselves to the basic torodial population structure shown in
Fig. 7.2. Thereby each individual has four neighbors and locally mates within
this sub-population. Therefore the selection scheme of the GA1 is replaced by
a local mating scheme. Obviously, the sub-population size of five individuals
is too small in order to rely on selection holding the sub-population at regions
of high fitness in the search space. Instead, we set the crossover rate p. = 1.0
and select a partner for each mating individual from its neighborhood. The
selection is based on the scaled fitness values, compare Sect. 6.3.2. Recall, that
the fitness scaling excludes the worst individual from being selected. This
results in a very severe selection scheme by taking just 3 of 4 neighboring
individuals into account. After being recombined an individual is mutated
with probability p,, = 0.03.

Experiments have shown, that even this severe selection scheme does not
suffice in holding the population at a level of high fitness. Therefore we fol-
low Gorges-Schleuter (1989) by introducing the acceptance criterion & which
controls the replacement of a parent by its offspring, compare Sect. 4.2.2. We
use a flexible acceptance criterion based on the fitness f and the lower bound
LB of the problem instance as proposed by Taillard (1993b). The mating
individual p is replaced by its offspring o only if f, < f, + (f, — LB) - holds.
Otherwise the offspring is discarded and the affected parent enters the next
generation unchanged. We found by experiment that £ = 0.10 works well for
our purpose. The acceptance criterion leads to a continuously decreasing rate
of accepted individuals' with an increasing mean fitness of the population.

As previously done in Chap. 6 for the GA1 we test the GA2 with several
benchmarks. Again 50 runs are carried out with the population size and the
number of generations both set to 100.

The results obtained for the GA2 are shown in Tab. 7.1. By comparing the
results with the ones for the GA1 shown in Tab. 6.4, we recognize significant
improvements of the average results obtained for the 12 benchmarks. This is
expressed by a mean relative error averaged over the problems of 2.4 com-
pared to 2.9 for the GA1. The standard deviation of the makespan from the
mean makespan in percent is significantly reduced as well. The GA2 shows an
average over all problems of 0.73 compared to 0.84 for the GA1. However, we
notice a runtime increase of ~ 40%, because the crossover rate is increased

! For the mt10 we calculate an LB = 796. By applying the acceptance criterion
we allow 93 makespan units deterioration for a random solution of quality 1730.
The optimal solution 930 may be replaced by an inferior solution differing in at
most 13 units.



118 7. Adaptation of Structured Populations

prob. size known mean err. dev.
mt1l0 10x10 930 950.7 2.2 0.9
mt20 20x05 1165 1181.1 1.4 0.5 Table 7.1. GA2 results ob-
abz7  20x15 665 687.0 3.0 0.8 tained for the mt10, mt20 and
abz8  20x15 670 698.0 4.2 0.6 another 10 tough problems
abz9  20x15 686 7144 34 0.7 listed in Tab. 8.3. For each
1a21 15%10 1046 1061.1 1.4 0.6 problem 50 runs are performed.
la24 15x10 935 945.3 1.1 1.1
la25 15x10 977 988.5 1.2 0.4

la27 20x10 1235 1264.0 2.4 0.4
1a29 20x10 1153 1202.2 3.9 1.0
1a38 15x15 1196 1225.7 2.5 0.9
la40 15x15 1222 12474 21 0.8

from p,. = 0.6 for the GA1 to p. = 1.0 for the GA2. The management of the
structured population itself is of negligible influence on the runtime.

7.1.3 Population Flow in the Diffusion Model

The advantage of the GA2 is best outlined by describing a typical run. Figure
7.3 on pp. 120-121 documents three distinct generations, namely 25, 75 and
150. The run is carried out with a population size of u = 2500 residing on
a 50 x 50 torus, referred to as the population’s habitat in the following. In
order to visualize the individuals adequately, the torus is cut resulting in a
two dimensional grid. We have chosen the extremely large population size
of 2500 in order to achieve a visual impression of the population flow. We
discuss four different measures which are shown by means of the following
filters:

Fitness obtained. The plots a)—c) show the fitness obtained in the range
[930,1050]. Thereby a dark gray shade indicates a high fitness whereas light
shades indicate individuals or low fitness. Larger makespans than 1050, which
merely are observed in plot a), are mapped to white shade. Most individuals
have obtained a fitness < 1050 even in generation 25 as can be seen in plot a).
Furthermore we identify several spots indicating neighboring individuals of
similar fitness. In generation 75, shown in plot b), some spots have enlarged to
areas by driving out other spots of inferior fitness. This process has resulted
in a substantial improvement of the mean fitness of the population. Three
large areas in the habitat have evolved to a near-optimal fitness independently
(indicated by dark shade).

Finally, plot ¢) shows the habitat in generation 150 consisting of a few
large areas of similar fitness. In the upper right corner of the habitat an opti-
mal fitness of 930 has been achieved. Because of the predominant dark shade
we can clearly identify mutated individuals of inferior fitness as light gray
spots. In this phase of the evolution further enlargement of the fitness areas
stops. Actually, we obtain a similar picture as in plot c) for generation 300
(not shown).
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Distance to the optimum. The plots d) f) show the normalized Hamming
distance D to the optimal solution as defined in (5.5). The mean normalized
Hamming distance of an initial population is D = 0.27 and the maximally
observed distance is D ~ 0.4, compare Sect. 5.2.3. Notice, that the actual
values are mapped to six distinct shades representing the range [0.0,0.4]. We
conjecture resembling genotypes of neighboring individuals to have a similar
distance to the optimal solution. Actually there is no proof, since the distance
metric does not obey the condition of transitivity.

Plot d) of generation 25 clearly shows various regions of similar distance
which loosely correspond to the fitness spots observed in plot a). Even in
this early stage we identify two regions of near-optimal distance indicated by
black shade. In generation 75 the smaller region has been driven out, but the
larger region has persisted by gradually extending its size. Amazingly, the
region of near-optimal distance (black) shows an inferior fitness in plot b).

Plot f) of generation 150 closely corresponds to the shaping of the areas
of similar fitness shown in plot ¢). The region of the small distance to the
optimum of plot e) has been strongly enlarged in the meantime. Plot ¢) shows
that its individuals already have found the optimal fitness of 930. Although
another region on the left of plot f) has evolved independently to a very small
distance to the optimum, its corresponding fitness is still not optimal.

In a randomly mating population the black area in plot e) would have been
quickly driven out by selecting putative superior individuals indicated by dark
shade in plot b). In structured populations such regions of putative inferior
individuals may persist, what Davidor (1991) calls the niche phenomenon.
The individuals are given a longer time to evolve their prerequisites in order
to improve their fitness before they are taken over by other individuals of su-
perior fitness. Davidor et al. (1993) verify the niche phenomenon exemplary
for the JSP. The results of the G&T GA of Yamada and Nakano (1992),
compare Sect. 5.1.3, can be improved considerably by engaging structured
populations.

Neighborhood entropy. The plots g) i) document the entropy E as given
n (5.8). Recall, that E denotes the gene diversity within a population, com-
pare Sect. 5.2.4. Here, E is measured for a sub-population consisting of the
individual considered and its four-individual neighborhood. E tends to 1.0 for
very large populations only. By considering a sub-population of five individ-
uals the maximally observed entropy is £ = 0.5. The E values are therefore
clustered to six distinct shades representing the range [0.0,0.5].

Plot g) shows the entropy within the various neighborhoods in genera-
tion 25. As formerly conjectured from plot d), already in this early phase
of adaptation small regions of almost identical genotypes have been formed.
Here, spots of black shade indicate neighborhoods consisting of almost iden-
tical individuals. In generation 75 the overall picture has changed drastically.
Regions of similar genotypes have been enlarged, enclosed by relatively thin
but long areas of neighborhoods with a higher genotypical variation.
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Plot i) shows the extreme in generation 150. Now, neighborhoods of high
variation appear as walls surrounding the even more enlarged regions of low
genotypical variety. Actually, the metaphor of “wall” fits perfectly: A wall
separates two different regions of low variation. In order to achieve the shaping
of the areas observed in c¢) and f), we merely add half of the width of the
border walls to the sizes of the black regions in i).

The overall picture of plot i) has hardly changed in generation 300 (not
shown). Therefore we conjecture regions separated by walls to be genetically
incompatible. Otherwise local mating within the overlapping neighborhoods
would have continued to enlarge and shrink areas of similar genotypes.

The above conjecture can be verified by considering the properties of
crossover, compare Sect. 6.2.2. The right plot of Fig. 6.5 on p. 101 shows
a continuously decreasing fitness correlation for increasing genotypical dis-
tances of the parents. The walls in plot i) indicate high genotypical distances
within a neighborhood. Thus, local mating will fail with a high probability.

Hill climbing moves. Finally, the plots j)-1) give the number of hill climb-
ing moves performed after the decoding of a newly recombined individual.
The number of moves is given in the range [2,8] neglecting the values < 2 and
mapping the values > 8 to 8. By comparing the overall picture of the plots
j) 1) we observe a decreasing number of moves performed. This observation
is in accordance with Fig. 6.9 for a random mating population.

By taking a first glance on plot 1) it surprises that only black and white
shades are left. This indicates that hill climbing either performs a large num-
ber of steps or it performs almost no steps at all. By taking a closer look we
can identify at least some of the walls of plot i). A high number of moves
performed in a later phase of the adaptation process indicates an unsuc-
cessful recombination. A successful recombination would have arranged the
genotypical characteristics of the mating individuals in a way which does not
require local hill climbing anymore. Again, this gives a hint to genotypical
incompatibilities due to epistasis.

Thus far we have concentrated on the white spots in plot 1). We have
neglected that most of the habitat is of black shade. Since we have observed
large regions of similarity for c), f) and i), it is not surprising anymore that
most individuals recombine (successfully) with genetically very similar or
even identical neighbors. In the lingo of evolutionary genetics such matings
are called inbreeding.

We state that in later phases of the adaptation process mating of indi-
viduals becomes futile either because of inbreeding (resembling individuals
or even identical individuals mate) or because of genotypical incompatibility
(very much different individuals mate). What is needed in order to circumvent
the situation described is some kind of automatic control of mating activities.
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7.2 Inheritance of Attitudes

In structured populations derived from the diffusion model mating is re-
stricted to a small number of nearby individuals. Hence global premature
convergence is postponed at the expense of inbreeding in the neighborhood.
In the following we describe a model of behavioral inheritance previously
presented by Mattfeld et al. (1994) in order to control inbreeding.

The control model makes use of the fact that crossover reduces the geno-
typical variation within a population whereas mutation increases this vari-
ation. In an early phase of the adaptation process we expect crossover to
explore promising regions of the search space efficiently by means of stochas-
tic sampling. In this phase mutations would merely lead to early entrapments
in local regions of the search space. Nevertheless, in later phases of adaptation
we expect mutations to maintain the gene pool diversity.

In our approach the degree of crossover vs. mutation is auto-adaptive over
the GA’s runtime. Instead of a global control mechanism we give preference
to a local control scheme.

7.2.1 Metaphor of Learned Behavior

In a randomly mating GA the gene pool diversity changes constantly at
a slow pace and evolution from generation to generation works well. The
genotypical environment is the same for all individuals of the population.
Whenever localities are introduced, evolution within the sub-populations is
too fast to maintain similar mating conditions for all neighborhoods.

Instead, each individual faces its own specific environmental conditions
given by the genotypical diversity of its neighborhood. Hence, it is most
desirable that individuals change their behavior as a function of changes of
their environment in a useful way. We propose a model in which inherited
behavior controls the way of reproduction for an individual. Thereby we
borrow the basic ideas from the (psychologist) school of Behaviorism.

This school became important in the early days of the twentieth century.
Staats (1975) gives a comprehensive survey and emphasizes that complex
functional behavior of an individual is learned and that environmental events
can affect the individuals behavior. Thorndike (1874-1949) laid the founda-
tions in 1898 with his “law of effect”: One effect of successful behavior is to
increase the probability that it will be used again in similar circumstances.
Rewards granted in case of success lead to patterns of behavior, called habits.

In 1947 Doob extended the formal learning theory to the consideration
of attitudes. He suggested that attitudes are anticipatory responses which
can mediate behavior. An attitude can be seen as a disposition to react
favorably or unfavorably to a class of environmental stimuli. Staats notes that
in social interactions attitudes are formed by social rewards which stimulate
reinforcement on certain behavior.



124 7. Adaptation of Structured Populations

elitist attitude

/saisfied

conservative:
\ disappointed

established attitude

pleased

critical attitude

/

risk-prone ~— satisfied

cooperative = satisfied
pleased

\ disappointed

disappointed

Fig. 7.4. Scheme of attitude transitions.

As shown in Fig. 7.4 we classify individual behavior by three general
cases. The initial attitude of individuals is an established one, i.e. they all act
cooperatively within their environment. Secondly, the elitist attitude follows
a conservative attitude. The last attitude is a more critical one, which tends
to act risk-prone. The actual behavior carried out is rewarded in terms of
social interaction. Again we classify three simple responses which are defined
by reinforcements. An individual can be pleased, satisfied or disappointed.

The success of the actual behavior carried out may change its attitude
and therefore changes its habit in a similar situation within the near future.
The individual will react differently and may receive a different reinforcement
on the same environmental situation.

In most cases a cooperative individual will be satisfied and therefore does
not change its attitude. If pleased by the success of its habit, next time it
will tend to act conservative trying to keep its previous performance level.
With this elitist attitude an individual can only be satisfied or disappointed
by the success of its habit. In case of disappointment it will change back to
the established attitude.

Failing on cooperative behavior brings up a critical attitude of the indi-
vidual towards its neighborhood environment. It will then tend towards a
more risk-prone behavior. The critical attitude is kept so long as a disap-
pointing response is still received. If the individual is satisfied by the result
of its behavior, it may change to the established attitude again. In rare cases
a risk-prone individual will receive a pleasing response. Then it changes to-
wards the elitist attitude directly.
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Don’t expect Fig. 7.4 to be a blueprint of the complete transition structure
of the attitude changes. In fact the response on a certain behavior gives only
a rough idea of which attitude may be suitable for the next trial. In general,
attitudes are changed only after a number of identical reinforcements. Strong
reinforcements can lead to immediate attitude changes, while, in general,
weak and moderate reinforcements lead to memory adjustments only.

7.2.2 Model of Attitude Inheritance

In order to implement attitude inheritance we transform our metaphor into
a local mating scheme. The established attitude corresponds to cooperation
with one of the neighbors by crossover. The critical attitude corresponds to
a mutation. The conservative behavior tries to save the state reached so far.
Here, the he individual performs no active operation (i.e. is sleeping) in order
to avoid replacement by offspring.

superior fitness sleeping threshold 1

Improve _ hrechold 1
OK Cro$0Ver»(-)\/aluate accept threshold 0

superior OR select mate _  hamming- offspring reject ]
ghooseb by fithess — distance? < oo threshold + —
low _ geeping threshold O —|

threshold O —
threshold 1 —
threshold 0 —

exceeds threshold

mutation - €valuate
offspring

Fig. 7.5. Control model of local recombination.

In Fig. 7.5, an individual first compares its fitness with the fitness in
its neighborhood. If the fitness is superior to all neighbors, the conservative
behavior will cause the individual to sleep. If several best individuals exist in
one neighborhood none of them will be superior. For this reason incorporating
attitude inheritance does not introduce an elitist strategy.

An inferior individual determines its attitude. Therefore its actual behav-
ior is drawn probabilistically from an interval [0,1]. Initially a threshold is set
to 1.0 enforcing crossover. Decreasing the threshold increases the probability
of mutation. In case of crossover, the Hamming distance to the selected mate
is evaluated. If mates differ in less than 1% of their genes it seems not worth-
while to try a crossover. Again, the individual sleeps, but now because of a
different reason. If crossover or mutation is carried out, the fitness of the off-
spring is evaluated. Either an offspring dominates both parents (improve), or
the acceptance rule decides whether to replace the individual by its offspring
(accept) or not (reject).
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Summing up all distinct operations we count eight responses which are
tied to reinforcements of the threshold. We modify the threshold by rules of
plausibility. In Fig. 7.5 the symbols “f}{ | 1” express the degree of changes
of the threshold. This rule set attempts to adjust the behavior of each single
individual towards the environment of its neighborhood. In our implemen-
tation the setting ff = +0.15, § = —0.15, = 40.05, | = —0.05 performed
well. This setting reacts adaptively on the occurrence of inbreeding with a
strong decrease of the threshold. It favors risky behavior by mutations in
later generations. In turn, a succeeding mutation increases the threshold and
leads to crossover again.

The implementation of inherited attitudes into the GA2 is referred to as
GA3 in the following. Apart from the local mating strategy all other para-
meters are taken from the GA2 without modifications.

7.2.3 Operation Frequencies

An investigation is carried out performing 50 GA3 runs for the mt10. The
population size is set to 196 individuals residing on a 14 x 14 torodial grid.
The termination criterion is set to 150 generations. The results presented are
the average obtained from the 50 runs performed.
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Figure 7.6 shows the relative frequencies of reproduction operations per-
formed in the GA3. In the beginning crossover dominates mutation as well as
sleeping. While the crossover frequency decreases, the mutation frequency in-
creases. Sleeping occurs at an almost constant rate of &~ 20%. In the following
we evaluate each of the three operation frequencies separately.

Figure 7.7 shows the frequency of sleeping due to one of two distinct rea-
sons. Sleeping is either performed due to a superior fitness of an individual in
its sub-population or due to a small Hamming distance in case of a crossover
attempt. In the initial phase of adaptation sleeping caused by a very small
Hamming distance between mating individuals rarely occurs. Here, sleeping
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caused by a superior fitness is almost solely responsible for the overall sleep-
ing rate. Over time sleeping caused by a superior fitness decreases whereas
sleeping caused by inbreeding increases. Notice, that together the GA3 saves
about 20% of the evaluations needed in comparison to the GA2.

Both curves of Fig. 7.7 give an approximation of the size and number of
the areas of low genotypical variation in the habitat, compare Fig. 7.3 for
the GA2. Recall, that sleeping caused by superior fitness occurs only if an
individual is superior to all its neighbors. Over time the areas of low genotyp-
ical variation enlarge and consequently sleeping caused by superior fitness is
observed less often. To the contrary, with enlarging areas of low genotypical
variation mates recognize a too small distance in case of a crossover attempt
more often. As previously seen for the GA2 in Fig. 7.3, area enlargements stop
in later generations. We conjecture a similar behavior for the GA3, because
there seems to be a saturation for both curves shown in Fig. 7.7.

We now turn to a detailed evaluation of the crossover outcome which forms
three of eight responses for reinforcements of the attitude inheritance model
shown in Fig. 7.5. Therefore we classify crossover outcome of Fig. 7.6 into
three cases: A crossover may lead to an offspring whose fitness dominates both
parents (improve). Furthermore, the fitness of the offspring either satisfies the
acceptance criterion or not. In the former case the offspring replaces its parent
(accept) whereas in the latter case the offspring is rejected and the parent is
left untouched (reject).

Figure 7.8 shows that the outcome of most crossover operations do not
satisfy the acceptance criterion. The GA3 tends to apply crossover if mating
individuals differ significantly from each other in terms of their Hamming
distance. This leads to crossover at the borders of the areas of low genotypical
variation, compare Fig. 7.3. Crossover is performed in an attempt to produce
successful long jumps within the domain of the fitness landscape, compare
Sect. 5.2.6. Of course, long jumps fail with a high probability; nevertheless
such trials are needed in order to discover so far unexplored regions of the
fitness landscape.
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In the initial phase of the adaptation the curve of improving crossover
and the curve of rejected crossover show an interesting time development.
In the first generation both cases occur with a frequency of each ~ 20% of
all operations performed. The improving crossover curve rapidly declines and
converges asymptotically towards zero. The rejected crossover curve increases
strongly up to generation 10 and decreases continuously from then on.

This strong increase of the rejected crossover curve in the very beginning
of the adaptation might be surprising, but can be explained by the proper-
ties of crossover. The initial population is generated at random resulting in
individuals which differ maximally from each other. The majority of recom-
binations fail in generating offspring of similar fitness compared with their
parents. At the same time a minority of recombinations succeed in producing
offspring of improved fitness. Within the first few generations these supe-
rior offspring are selected for mating with a high probability and introduce
a rough direction of search. From then on genetic adaptation works well in
generating offspring of similar fitness compared to their parents.
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In Figure 7.9 the majority of mutation attempts are accepted. The rejec-
tion rate increases over time, but the rate of mutated offspring satisfying the
acceptance criterion increases even stronger. The rate of improving mutations
is very low although is does not drop to zero as observed for crossover.

In conclusion, mutations are a serious alternative to crossover when ap-
plied to areas of low genotypical variation in the habitat. But notice, that
just a very high mutation rate fails. The auto-adaptive control by means of
inherited attitudes performs mutations where needed and relies on crossover
in other cases.

7.2.4 Inbreeding Coefficients

Thus far we have regarded inbreeding to be a generally negative factor for
genetic adaptation. This view is exposed as an oversimplification when taking
convergence into account. The convergence of a population is achieved by
the reduction of the gene pool diversity. If a population does not converge,
we observe a low selection pressure which leads to a poor GA performance.
Obviously, convergence comes along with increasing inbreeding rates. Thus,
inbreeding is closely linked to one of the basic concepts of genetic adaptation.
In accordance with Smith (1989) we differentiate between inbreeding by
descendent (IBD) and inbreeding by kinship (IBK) in the following.

— The genes of two mating individuals may be copies of the same gene in
an earlier member of the line, during the last ¢ generations. If so, they are
said to be identical by descendent.

— The genes of two mating individuals may be identical because the gene was
common in the population from which the line was derived. If so, genes are
said to be identical by kinship.

Apparently there is something arbitrary in the definition of IBD. Geno-
typical identity always indicates some common ancestry. In random mating
populations we differentiate between IBD and IBK by choosing a past gener-
ation count t. Individuals with identical genes, which have mated in the last
t generations, are said to be IBD and IBK otherwise.

In the diffusion model we measure IBD for the mating individuals within
small sub-populations. The chance that their ancestors have already mated
in previous generations is very high. To the contrary, individuals of different
sub-populations cannot be IBD by definition. Therefore IBK is measured
by selecting individuals at random from the overall population. In doing so,
IBK indicates the degree of convergence in the overall population whereas
IBD indicates the degree of inbreeding in the sub-populations.

For a measure of inbreeding we follow Collins and Jefferson (1991). The
normalized Hamming distance D between two individuals determines the
inbreeding coefficient F.

F = (Do — D) /Dy (7.1)



130 7. Adaptation of Structured Populations

The expected rate of genotypical diversity is given by the mean Hamming
distance Dy of the population in generation 0, whereas the observed rate of
genotypical diversity is given by D; in generation t. D, is measured in the IBD
case by taking the average Hamming distance between all mating couples in
generation t. IBK is measured by picking the same number of couples from
the overall population at random.

To compare the inbreeding coefficients of GA2 and GA3 we perform 50
runs each with a population size of y = 196 and a termination criterion of
150 generations. For both GAs we record Figp and Figk separately.
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Figure 7.10 shows the mean inbreeding coefficients recorded. Indepen-
dently of the type of algorithm run (GA2 or GA3) we observe a significantly
higher Figp compared to the corresponding Figk. This phenomenon is in ac-
cordance with the considerations made in the beginning of this chapter and
with the observations from Fig 7.3. The spatial neighborhood structure of
the population leads to a fast convergence within the various sub-populations
whereas for the entire population a genotypical variation is kept over the gen-
erations. Even after 150 generations the population hasn’t fully converged;
instead it has evolved to large areas of genetically incompatible individuals.

Curve a) in Fig. 7.10 shows the Figp for GA2. We observe a strong
increase of inbreeding right at the beginning of the genetic adaptation. Later
on the increase of Figp becomes smaller. After 150 generations Figp has
raised to &~ 0.87. The Figk for GA2 is given in curve c). In generation 150 we
observe a value of & 0.75. The inbreeding coefficients of GA3 are generally
smaller compared to the GA2 coefficients. The Figp of GA3 is shown in curve
b) which increases up to & 0.80 in generation 150. The corresponding Fipk
shown in d) increases only slowly up to = 0.60 in the last generation.

Up to 15 generations GA2 and GA3 perform almost identical. Then, in-
breeding firstly occurs within the sub-populations and the attitude inheri-
tance mechanism starts to work by favoring mutation. This leads to a slower
increase of b) compared with a) and in a similar way a slower increase of
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d) in comparison to c¢). Surprisingly, the difference between c¢) and d) be-
comes larger from generation ¢ to generation ¢t + 1. GA2 tends to converge
in later generations whereas GA3 shows a larger genotypical variation within
the population in later stages. This observation indicates that GA3 keeps on
searching in different regions of the search space even in later generations.

This phenomenon is described best by comparing the outcome of adapta-
tion within the habitat in generation 150 of two distinct GA runs. Therefore
we compare the GA2 run previously shown in Fig. 7.3 with a GA3 run per-
formed with an identical parameter setting.

GA2 GA3

[ORGNo M=o ST

<TOoOHea+BO®

Fig. 7.11. The fitness obtained and the neighborhood entropy for a GA2 and a
GA3 run with a population size of 2500 in generation 150. The GA2 plots are taken
from Fig. 7.3. For the legend the reader is referred to pp. 120 121.

Figure 7.11 shows the fitness obtained and the neighborhood entropy
within the habitat in generation 150. Both algorithms have obtained a similar
solution quality. In contradiction to GA2, which shows a few large areas of
similar fitness, the habitat of GA3 population consists of numerous areas of
considerably smaller size. This situation is reflected by the entropy of the
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neighborhoods. Here, only relatively small areas of low gene variety (black)
can be observed. Thus we conjecture, that GA3 explores the search space
more thoroughly than done by GA2.

We expect the more differentiated search of GA3 to produce a further
improvement of computational results. In order to verify our expectation
we run GA3 on the same benchmark problems as previously done for GA1
(compare Tab. 6.4) and for GA2 (compare Tab. 7.1). Again, 50 runs are
performed for each problem instance. As before, a population size of 100
individuals and a fixed number of 100 generations is used.

prob. size known mean err. dev.

mtl0 10x10 930 943.7 1.5 0.9

mt20 20x05 1165 1180.3 1.3 0.4

abz7  20x15 665 6829 24 0.7 Table 7.2. GA3 results ob-
abz8  20x15 670 696.2 3.9 0.6 tained for the mt10, mt20 and
abz9  20x15 686 7125 3.1 0.7 another 10 tough problems
1a21  15x10 1046 10594 1.3 06  lsted inTab. 8.3,

la24 15%x10 935 945.3 1.1 0.9

la25 15%x10 977 986.6 1.0 0.3

la27 20x10 1235 1261.6 2.2 0.4
1a29 20x10 1153 1199.8 3.7 0.9
1a38 15x15 1196 12225 2.2 1.0
1a40 15x15 1222 12436 1.8 0.7

Table 7.2 shows the results obtained. The mean relative error averaged
over the 12 benchmarks is reduced from 2.4 for GA2 to 2.1 for GA3. The
standard deviation of the mean results obtained is reduced from 0.73 for
GA2 to 0.67 for GA3. Keep in mind that GA3 saves about 20% of the fitness
evaluations. This means, that GA3 effectively carries out roughly 8000 of
10000 possible evaluations in a single run.

GA3 outperforms GA2 in obtaining a shorter makespan in the average
for most problem instances. This is particularly remarkably when we consider
that already GA2 produces (almost) satisfying results. A further increase of
the solution quality is even more difficult to obtain. In conclusion, GA3 does
not only produce better results but it also achieves these results at a smaller
computational cost compared to GA2.
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In this chapter we give a survey on the GA approaches considered so far.
We continue with a detailed computational study of the most powerful algo-
rithm on 162 benchmark problems. Finally we discuss the suitability of the
algorithm for either very large or very difficult JSP instances.

8.1 Survey of the GA-Approaches

Throughout this thesis we have considered three different GAs. The GA1
follows the mainstream of previous GA research. The GA2 introduces spatial
distances between the individuals by means of structured populations. The
GA3 enhances the structured population model by allowing the individuals to
react to their specific environment. In the following we describe the parameter
settings of the approaches and give a summary of the results achieved.

8.1.1 Overview of Parameters

Care has been taken to keep the three different approaches comparable.
Therefore the same representation, genetic operators and heuristic decoding
procedure are used within all of our approaches. Furthermore an identical
population size of 100 and a fixed number of generations of 100 (resulting in
at most 10000 evaluations) are used always. Obviously, GA parameters show
strong interdependencies. Thus, by modifying one parameter other parame-
ters may have to be adjusted to the new configuration. E.g. the introduction of
a structured population into a GA requires the appliance of an acceptance cri-
terion (which can be left ouf from being considered for a global mating GA).
Whenever there is a tradeoff between the comparability of the approaches
and their efficiency, preference is given to the more efficient alternative.

Table 8.1 lists the parameter setting of the three approaches considered.
We choose a representation which reflects the essentials of scheduling prob-
lems. A schedule representation by precedence relations among operations
can cope with a wide array of additional constraints (e.g. release times and
due dates) and objectives (e.g. minimization of job tardiness or maximiza-
tion of machine work load). The algorithm can therefore easily be adopted
to requirements of real world production scheduling.
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Table 8.1. Summary of the settings of GA parameters used for the GA1, the GA2
and the GA3.

parameter

description

GAl1 GA2

GA3

representation

decoding

fitness eval.

crossover op.

mutation op.

crossover-rate

mutation-rate

population size

pop. structure

# of offspring

# of neighbors

selection scheme

acceptance crit.

termination crit.

A permutation with repetition (PwR)
of job identifiers expresses the prece-
dence relations among operations.

A semi-active schedule is built and
then re-optimized by a hill climber
using the A3 Local Search neighbor-
hood and the Cs¢ control strategy.

The fitness f; is evaluated for individ-
ual i by computing the makespan Crax
for a decoded schedule.

Crossover tries to preserve the relative
order of operations in the recombined
permutations.

A mutations alters the absolute order
of operations in the permutation by
modifying the position of one opera-
tion in the permutation arbitrarily.

The probability p. for an individual to
perform crossover.

The probability p,, for an individual
to perform a mutation (independent of
pe)-

A fixed number of individuals p form
the GA population.

The individuals reside on a torodial
grid resulting in a limited dispersal of
the population.

The number of offspring A is equal to
the population size u, thus each indi-
vidual produces exactly one offspring.

The number of individuals on which
selection is based and from which a
mating partner is chosen.

Proportional selection based on the
scaled fitness fi — fmin is used, where f;
denotes the fitness of individual ¢ and
fmin gives the minimal fitness within
the neighborhood.

An offspring o replaces its parent p if
fo < fp+ (fp — LB) - £ holds. LB
denotes the lower bound of the prob-
lem instance and ¢ is the acceptance
criterion.

A fixed number of generations is used.
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On the other hand we have seen that a genuine GA produces poor re-
sults, hence we borrow a Local Search based re-optimization procedure in
order to improve the solution quality. This procedure clearly depends on the
objective under consideration and it is questionable whether such an efficient
re-optimization procedure exists for other objectives than for the reduction
of makespan.

The reproduction operators are chosen to work on a genotypical level
independently of additional constraints involved or a certain objective pur-
sued. By respecting the order of genes we follow previous GA research in
combinatorial optimization. Although the crossover as well as the mutation
operator appear simple, they have shown to preserve parental characteristics
quite well.

We use a relatively small population size and generation number in order
to achieve a reasonable runtime. The same reason dictates to produce only
a single offspring for each parent (i.e. two offspring for each couple). Thus,
selection is based on a relatively small number of individuals. Therefore a
severe selection scheme based on scaled fitness values is necessary to increase
the selection pressure over time. For GA2 and GA3 the extremely small
neighborhood additionally requires an acceptance criterion in order to achieve
a sufficient selection pressure.

8.1.2 Comparison of Results

We have seen that GA1 gets easily trapped in local optima. This phenomenon
is partially circumvented by introducing structured populations in GA2.
Structured populations come along with a considerable degree of inbreeding
causing an inefficient search. The phenomenon of local inbreeding is reduced
by introducing the model of attitude inheritance which leads to GA3.

relative error std. deviation Table 8.2. Comparison of the
GA1l GA2 GA3 GAl GA2 GA3 approaches of this thesis.
2.9 2.4 2.1 0.84 073 0.67

A summary of the relative error and the standard deviation of the
makespan obtained for the three approaches is given in Tab. 8.2. The values
presented are the average results of the 12 benchmarks considered in Tab. 6.4,
7.1 and 7.2. GA2 clearly outperforms GA1 and in , GA3 outperforms GA2.
This rank holds for the relative error as well as for the deviation of results
obtained from various runs.

In the following section we let GA3 operate on very large and difficult
benchmark problems in order to assess its suitability for such problems.
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8

.2 Benchmark Study

The JSP has been widely studied within the last 30 years. In order to com-
pare the various solution techniques proposed, several suites of benchmark
problems have been provided for public use by different authors.

First we give a short description of the benchmark suites'. Then, some

properties of the benchmark instances are discussed. Finally, we document
an extensive computational study on 162 instances for the GA3.

8.2.1 Available Benchmark Suites

Up to our knowledge, all available JSP benchmarks are listed in the tables
of this section. The various suites are presented below.

The most widely distributed suite of benchmark problems is the three
problem test set due to Fisher and Thompson (1963). The 10x10 problem
is of particular interest since almost any JSP algorithm proposed so far
has been applied to this problem. Although it has been stated back in
1963, after 26 years of research the makespan of 930 has been proofed
to be minimal by Carlier and Pinson (1989). The problems are listed in
Tab. 8.5. They are prefixed with mt or ft in literature.

Five instances prefixed with abz were generated by Adams et al. (1988).
Problem 5 and 6 are quite easy to solve, but the problems number 7, 8 and
9 of size 20 x 15 are most difficult to solve, see Tab. 8.6.

For some unknown reason Yamada and Nakano (1992) have not tested the
G&T GA with commonly available benchmarks. Instead they have gener-
ated four 20 x 20 instances on their own prefixed with yam. Although this
suite is hardly known in literature, we have included the problems into the
investigation. Table 8.7 lists the instances.

Another suite (prefixed with orb) is due to Applegate and Cook (1991).
It consists of ten 10x 10 problem instances. Only the first 5 problems are
considered in literature, because the latter 5 instances are quite easy to
solve. Table 8.8 lists the instances.

A further test set was generated by Storer et al. (1992a). It consists of 20
problem instances prefixed with swv of sizes between 10x20 and 50x10. This
benchmark suite is not that widely accepted by the research community.
Of the 50 x 10 problems 5 are regarded to be easy while the other 5 are
hard to solve. The instances are listed in Tab. 8.9.

A large suite has been proposed by Lawrence (1984). It consists of 40 prob-
lem instances of varying size in the range of 10x5 to 30x10. Although most
of the instances are quite easy to solve, some larger instances remain a com-
putational challenge. The instances prefixed with 1la are listed in Tab. 8.10.

All instances considered in this section can be obtained via Internet from

mscmga.ms.ic.ac.uk. The procedure for obtaining OR test problems is described
in Beasley (1990).
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Since different names are used in literature, the alternate name is given in
parenthesis.

— A large set of 80 problem instances is proposed by Taillard (1993b). They
are of particular interest because of their large size up to 100 x 20. Fur-
thermore Taillard developed a problem generation procedure and made it
available for public use. The instances are prefixed with ta, see Tab. 8.11
and Tab. 8.12.

Table 8.3 lists 13 benchmark instances which serve as a test-bed for the
three different GA approaches considered throughout this thesis. Beside two
famous problems of Fisher and Thompson other difficult problems due to
Adams, Balas and Zawack as well as Lawrence are selected. Among these,
for abz7, abz8, abz9 and 1a29 optimality could still not be proofed.

name size table Table 8.3. The collection of benchmarks used
mtl0 10x10 8.5 throughout this thesis. It consists of the two famous
mt20 20x05 8.5 instances due to Fisher and Thompson (1963) and ten
abz7  20x15 8.6 other tough job shop problems selected by Applegate
abz8 20x15 8.6 and Cook (1991). This collection of problem instances
abz9  20x15 8.6 provides medium sized problems which are generally
la21 15x10 8.10 hard to solve.

la24 15x10 8.10
la25 15x10 8.10
la27 20x10  8.10
1a29 20x10 8.10
la38 15x15 8.10
la40 15x15 8.10

Different to most authors Taillard (1993b) describes the procedure for
generating rectangular problem instances. Processing times for the opera-
tions are uniformly distributed in the range [1,99]. Operations are assigned
to machines in a uniform distribution. Hard problems were identified by a
large deviation between the lower bound and an upper bound obtained by
a Tabu Search algorithms also due to Taillard (1993a). Other distributions
(e.g. normal distribution) for processing times and machine assignments were
tested, but Taillard found the resulting problem instances easy to solve in
general (personal communication 1994).

An interesting observation has been noted by Storer et al. (1992a). They
found most problems with uniformly distributed job/machine assignments
easy to solve. Storer et al. follow Fisher and Thompson (1963) in generating
precedence relations of each job. Recall that each job has to pass all machines.
Fisher and Thompson divide the set of machines into two sub-sets of the
same size. Now challenging problems are generated by letting each job pass
all machines of the first set before the machines of the second set are passed.
This technique has been used also for the hard swvil swv15 instances
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whereas the easy swv16 swv20 instances in Tab. 8.9 were generated with
uniformly distributed precedence relations for each job.

A striking observation due to Taillard is that large problems are easy
to solve if n > m % 6. For these cases it could be observed that the lower
bound does always determine the makespan. Even for 100 x 20 instances the
lower bound was reached by Taillard’s Tabu Search approach for 97 of 100
problems generated. Quadratic problem instances remain more difficult even
in case of medium size. Taillard’s observations are in accordance with the
results presented in the remainder of this section. Given a fixed number of
operations involved, quadratic instances are generally more difficult to solve
than their rectangular counterparts.

8.2.2 Computational Results

In the tables in the remainder of this section the name and size of the prob-
lem instances are given in column 1 and 2. All problems considered are of
rectangular size, where n xm denotes n jobs and m machines involved. In
column 3 a lower bound LB is given for instances which could not proofed to
be solved to optimality. The lower bounds have been received from Vaessens
at Eindhoven University (personal communication 1995), who engaged the
‘edge-finder’ algorithm due to Applegate and Cook (1991) to improve the
bounds. Column 4 shows the best known makespan found so far. Column 5
gives a reference on the approach which first found the best known makespan.
The abbreviations used are given in Tab. 8.4.

Table 8.4. Abbreviations of references.

abbr. algorithm reference

LLR Branch & Bound Lageweg et al. (1977)

La Branch & Bound Lageweg 1984 (unpublished)
ABZ Shifting Bottleneck Adams et al. (1988)

AC Shuffle Algorithm Applegate and Cook (1991)
ALLU Simulated Annealing Aarts et al. (1994)

BV Guided Local Search  Balas and Vazacopoulos (1994)
CP1 Branch & Bound Carlier and Pinson (1989)

CP2 Branch & Bound Carlier and Pinson (1990)

CP3 Branch & Bound Carlier and Pinson (1994)

We Tabu Search
LAL Simulated Annealing
MSS Simulated Annealing
NS Tabu Search

SWV  Genetic Algorithm
Tal Tabu Search
Ta2 Tabu Search

VA Shuffle Algorithm
VAL Shuffle Algorithm
YN Simulated Annealing

Wennink 1995 (pers. comm.)
Van Laarhoven et al. (1992)
Matsuo et al. (1988)

Nowicki and Smutnicki (1995)
Storer et al. (1992a)

Taillard (1993b)

Taillard (1993a)

Vaessens 1995 (pers. comm.)
Vaessens et al. (1995)
Yamada and Nakano (1995)
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The columns 6 10 lists the results obtained by the GA3 as described
in Sect. 7.2.2. A summary of the GA parameters is given in Tab. 8.1. The
GA3 is written in the C++ language by massively use of the LEDA-library,
compare Mehlhorn and Niher (1989). All runs are performed on a SUN 10/41
workstation running the Solaris™ operating system. The algorithm is run for
a total of 30 iterations for each problem considered.

Column 6 gives the best makespan found in the 30 runs carried out.
Column 7 lists the mean result obtained in these runs. Column 8 lists the
relative error calculated by 100(mean — known)/known. Column 9 gives the
standard deviation of the makespan from the mean makespan obtained in
percent. The last column no. 10 lists the average runtime needed in seconds.

Table 8.5. Benchmarks proposed by Fisher and Thompson.

problem description GA3 results
name size LB known by best mean err. dev. sec.
mt06 6x6 55 LLR 55 55.0 0.0 0.0 6
mt10  10x10 930 La 930 943.7 1.5 0.7 40
mt20 20x5 1165 CP1 1165 1180.3 1.3 04 47

Table 8.6. Benchmarks proposed by Adams, Balas and Zawack.

problem description GA3 results
name size LB known by best mean err. dev. sec.
abzd  10x10 1234 AC 1234 1239.7 0.5 0.2 24
abz6  10x10 943 ABZ 934 9472 04 0.1 20
abz7  20x15 655 665 Ta2 668 6829 24 0.7 170
abz8  20x15 638 670 ALLU 684 696.2 3.9 0.6 182
abz9  20x15 656 686 YN 702 7126 3.1 0.7 187

Table 8.7. Benchmarks proposed by Nakano and Yamada.

problem description GA3 results
name size LB known by best mean err. dev. sec.
yaml 20x20 826 888 We 904 9119 2.7 0.5 279
yam2 20x20 861 912 BV 928 940.5 3.1 0.6 263
yam3 20x20 827 898 We 907 9188 2.3 0.8 278

yam4 20x20 918 977  We 992 1012.0 3.6 1.0 319
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Table 8.8. Benchmarks proposed by Applegate and Cook.

8. A Computational Study

problem description

GA3 results

name size LB known by best mean err. dev. sec.
orb1 10x 10 1059 AC 1064 1087.3 2.7 1.0 35
orb2 10x10 888 AC 888 892.1 0.5 0.4 35
orb3 10x10 1005 AC 1005 1035.0 3.0 1.2 42
orb4 10x10 1005 AC 1005 10172 1.2 0.6 38
orb) 10x 10 887 AC 887 890.5 04 0.3 41
orb6 10x10 1010 AC 1010 1026.1 1.6 0.5 33
orb7 10x 10 397 AC 397 399.9 0.7 0.7 28
orb8 10x10 899 AC 899 9148 1.8 1.1 43
orb9 10x10 934 AC 934 946.2 1.3 0.5 31
orb10 10x10 944 AC 944 9444 0.0 0.2 33
Table 8.9. Benchmarks proposed by Storer, Wu and Vaccari.
problem description GA3 results

name size LB known by best mean err. dev. sec.
swv0l 20x10 1392 1418 BV 1501 1556.4 9.8 1.6 135
swv02 20x10 1475 1491  Va 1551  1593.7 6.9 1.3 138
swv03 20x10 1328 1398 Va 1478  1531.7 9.6 1.5 146
swv04 20x10 1369 1497 Va 1566 1601.6 7.0 1.2 148
swv05  20x10 1450 1452 Va 1535 1582.8 9.0 1.4 147
swv06 20x15 1591 1718 BV 1807 1874.8 9.1 1.5 260
swv07 20x15 1446 1652 BV 1758 1795.2 8.7 1.0 261
swv08 20x15 1638 1798 BV 1913  1962.3 9.1 1.2 260
swv09 20x15 1600 1710 BV 1803 1846.5 8.0 1.2 268
swvl) 20x15 1631 1794 BV 1891 1933.8 7.8 1.1 259
swvll 50x10 2983 3047 BV 3624 3793.8 245 1.6 643
swvl2 50x10 2972 3045 BV 36563 3774.3 24.0 1.8 674
swvld 50x10 3104 3173 BV 3628 3804.4 199 1.9 658
swvld  50x10 2968 BV 3467 3621.6 22.0 2.1 742
swvls 50x10 2885 3022 BV 3513 3698.7 224 2.1 642
swvl6é  50x10 2924 SWV 2924 2924.0 0.0 0.0 266
swvl7? 50x10 2794 SWV 2794 2794.0 0.0 0.0 355
swvl8  50x10 2852 SWV 2852  2852.0 0.0 0.0 274
swv1l9 50x10 2843 SWV 2843 2843.0 0.0 0.0 453
swv20 50x10 2823 SWV 2823  2823.0 0.0 0.0 281
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Table 8.10. Benchmarks proposed by Lawrence.
problem description GA3 results

name size LB known by best mean err. dev. sec.
la01 (F1) 10x5 666 ABZ 666 666.0 0.0 0.0 13
la02 (F2) 10x5 655 LAL 655 655.0 0.0 0.0 16
1a03 (F3) 10x5 597  MSS 597 597.0 0.0 0.0 16
la04 (F4) 10x5 590 LAL 590 590.0 0.0 0.0 13
la05 (F5) 10x5 593 ABZ 593 593.0 0.0 0.0 12
1la06 (G1) 15x5 926 ABZ 926 926.0 0.0 0.0 19
1a07 (G2) 15x%5 890 ABZ 890 890.0 0.0 0.0 23
1a08 (G3) 15x5 863 ABZ 863 863.0 0.0 0.0 21
1a09 (G4) 15x%5 951 ABZ 951 951.0 0.0 0.0 19
la10 (G5) 15x5 958 LAL 958 958.0 0.0 0.0 17
lall (H1) 20x5 1222 ABZ 1222 1222.0 0.0 0.0 27
lal2 (H2) 20x5 1039 ABZ 1039 1039.0 0.0 0.0 27
lal3 (H3) 20x5 1150 ABZ 1150 1150.0 0.0 0.0 26
lal4 (H4) 20x5 1292 ABZ 1292 1292.0 0.0 0.0 24
lal5 (H5) 20x5 1207 ABZ 1207 1207.0 0.0 0.0 32
lal6 (A1) 10x10 945 CP2 945 950.3 0.6 1.1 22
lal7 (A2) 10x10 784  MSS 784 784.8 0.1 0.1 22
lal8 (A3) 10x10 848  MSS 848 848.0 0.0 0.0 25
la19 (A4) 10x10 842 MSS 842 8446 0.3 0.4 29
1a20 (A5) 10x10 902 LAL 902 906.7 0.5 0.1 31
la21 (B1) 15x10 1046 VAL 1047 10594 1.3 0.6 65
la22 (B2) 15x10 927 MSS 927 9342 0.8 0.4 57
la23 (B3) 15x10 1032 ABZ 1032 1032.0 0.0 0.0 55
la24 (B4) 15x10 935 AC 938 945.3 1.1 0.9 56
la25 (B5) 15x10 977 AC 977 986.6 1.0 0.3 52
la26 (C1) 20x10 1218 LAL 1218 12180 0.0 0.0 105
1a27 (C2) 20x10 1235 CP3 1236 1261.6 2.2 0.4 108
la28 (C3) 20x10 1216 MSS 1216 1229.0 1.1 0.7 101
la29 (C4) 20x10 1130 1153 VA 1180 1199.9 3.7 0.9 104
1a30 (C5) 20x10 1355 ABZ 1355 1355.0 0.0 0.0 98
la31 (D1) 30x10 1784 ABZ 1784 1784.0 0.0 0.0 140
la32 (D2) 30x10 1850 ABZ 1850 1850.0 0.0 0.0 174
1a33 (D3) 30x10 1719 ABZ 1719 1719.0 0.0 0.0 150
la34 (D4) 30x10 1721 ABZ 1721 1721.0 0.0 0.0 169
1a35 (D5) 30x10 1888 ABZ 1888 1888.0 0.0 0.0 153
1a36 (11) 15%x15 1268 CP2 1269 12916 1.9 0.5 79
1a37 (12) 15x15 1397 AC 1402 1431.0 24 0.7 95
1a38 (13) 15%x15 1196 NS 1201 12225 2.2 1.0 92
1a39 (14) 15x15 1233 AC 1240 12486 1.3 0.4 89
1a40 (15) 15%x15 1222 AC 1228 1243.7 1.8 0.7 99
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Table 8.11. Benchmarks proposed by Taillard (part 1).

problem description

GA3 results

name size LB known by best mean err. dev. sec.
ta0l 15x15 1231 Tal 1247 1255.6 2.0 0.4 92
ta(2 15%x15 1244 NS 1247  1269.4 2.0 0.6 99
ta03 15x15 1206 1218 BV 1221  1236.5 1.5 0.9 101
ta04 15x15 1170 1175  We 1181 1191.6 1.4 1.1 108
ta05 15x15 1210 1228 We 1233 12434 1.3 0.8 104
ta06 15x15 1210 1240 We 1247  1257.8 1.4 0.5 101
ta07 15x15 1223 1228 Tal 1228 1250.2 1.8 0.6 90
ta08 15x15 1187 1217 BV 1217  1241.1 2.0 0.7 98
ta09 15x15 1247 1274 BV 1296 13183 3.5 0.9 107
tal0 15%x15 1241 BV 1255 12826 34 0.6 90
tall 20x15 1321 1373 Va 1411 14288 4.1 0.7 193
tal2 20x15 1321 1367 BV 1389 14155 3.5 0.7 175
tal3 20x15 1271 1350 BV 1368 1396.0 3.4 1.1 197
tald  20x15 1345 NS 1360 1370.7 1.9 0.4 166
talb 20x15 1293 1353 BV 1391  1417.0 4.7 0.9 191
tal6 20x15 1300 1371  Tal 1381 1412.0 3.0 09 185
tal7  20x15 1458 1478 BV 1496 1522.1 3.0 1.0 158
tal8 20x15 1369 1409 BV 1459 14776 4.9 0.7 203
tal9 20x15 1276 1343 Va 1382 1425.7 6.2 1.5 174
ta20 20x15 1316 1353 We 1381 13964 3.2 0.5 192
ta2l 20x20 1539 1658 We 1723 17487 5.5 0.7 288
ta22 20x20 1511 1618 BV 1626 1649.7 2.0 0.8 281
ta23 20x20 1472 1563 We 1613 1623.5 3.9 0.5 276
ta24  20x20 1594 1659 BV 1689 17194 3.6 0.8 257
ta2b 20x20 1496 1598 Tal 1635 1658.5 3.8 0.7 249
ta26 20x20 1539 1655 We 1700 17181 3.8 0.6 289
ta27  20x20 1616 1697 We 1751 1772.0 44 0.8 291
ta28 20x20 1591 1615 BV 1651 16764 3.8 0.9 267
ta29 20x20 1514 1629 NS 1631 1651.5 1.4 0.5 280
ta30 20x20 1468 1612 BV 1627 1653.2 2.6 1.1 277
ta3l 30x15 1764 1766 NS 1813 1839.8 4.2 0.9 386
ta32 30x15 1774 1810 BV 1894 19225 6.2 0.8 377
ta33 30x15 1778 1796 BV 1896 1919.0 6.8 0.6 367
ta34  30x15 1828 1836 BV 1930 19493 6.2 0.7 341
ta3b 30x15 2007 Tal 2019 20445 1.9 0.7 341
ta36 30x15 1819 1826 BV 1889 19148 4.9 0.8 381
ta37  30x15 1771 1787 BV 1846 1876.0 5.0 1.0 381
ta38 30x15 1673 1681 BV 1760 1786.0 6.2 0.8 367
ta39 30x15 1795 1806 BV 1871 1906.3 5.6 09 351
tad0 30x15 1631 1695 BV 1763 18044 6.5 0.8 392
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Table 8.12. Benchmarks proposed by Taillard (part 2).
problem description GA3 results

name size LB known by best mean err. dev. sec.
tadl 30x20 1859 2026 BV 2156  2199.5 8.6 0.8 611
tad2 30x20 1867 1974 BV 2088 2125.3 7.7 0.9 623
tad3 30x20 1809 188 BV 1990 2027.1 7.5 0.9 617
tad4 30x20 1927 2021 BV 2138 21744 7.6 1.0 611
tadb 30x20 1997 2027 BV 2106 2132.6 5.2 0.8 629
tad6 30x20 1940 2051 BV 2166  2226.1 8.5 1.1 628
tad7 30x20 1789 1934 BV 2036 2064.2 6.7 0.9 572
tad8 30x20 1912 1986 BV 2078 2117.8 6.6 0.8 595
ta49 30x20 1905 2013 Tal 2102 2143.8 6.5 0.8 628
tab0 30x20 1807 1967 BV 2065 2103.4 6.9 0.8 612
tabl 50x 15 2760 Tal 2870 29275 6.1 0.9 926
tah2 50x15 2756 Tal 2883  2932.9 6.4 0.9 873
tab3 50x 15 2717  Tal 2742 2780.1 2.3 0.7 852
tabd 50x15 2839 Tal 2839  2852.3 0.5 0.5 958
tabb 50x 15 2679 NS 2798  2853.9 6.5 0.8 935
tab6 50x15 2781 Tal 2882  2920.8 5.0 0.8 907
tab7 50% 15 2943 Tal 2989  3036.9 3.2 0.6 945
tab8 50% 15 2885 Tal 2954 3001.3 4.0 0.7 898
tab9 50x 15 2655 Tal 2742 2817.0 6.1 0.9 937
ta60 50x 15 2723 Tal 2803 2826.8 3.8 0.4 922
ta61 50%20 2868 NS 3022  3056.3 6.6 0.6 1485
ta62 50%x20 2869 2900 BV 3136 3171.6 94 0.6 1609
ta63 50%20 2755 NS 2898  2939.9 6.7 0.7 1576
ta64 50%20 2702 NS 2855  2897.2 7.2 0.7 1557
ta65h 50%20 2725 NS 2872 2930.0 7.5 0.8 1536
ta66 50%20 2845 NS 3008 3044.0 7.0 0.6 1515
ta67 50x20 2825 2826 BP 3019  3066.5 8.5 0.9 1517
ta68 50%20 2784 NS 2898  2958.6 6.3 0.9 1603
ta69 50%20 3071 NS 3233 32775 6.7 0.7 1376
ta70 50%20 2995 NS 3240 3293.5 10.0 0.8 1476
ta7l 100x20 5464 Tal 5851  5944.2 8.8 0.8 4747
ta72 100x20 5181 Tal 5434  5464.8 5.5 04 5717
ta73 100x20 5568 Tal 5977  6031.2 8.3 0.5 4964
ta74  100x20 5339 Tal 5523  5584.2 4.6 0.6 4886
ta7h 100x20 5392 Tal 5793 5868.1 8.8 0.7 5912
ta76 100%20 5342 Tal 5574 5661.6 6.0 0.6 5994
ta77  100x20 5436  Tal 5615  5691.2 4.7 0.7 6221
ta78 100%20 5394 Tal 5723 5758.9 6.8 04 6347
ta79 100x20 5358 Tal 5552 5602.0 4.6 0.5 6570
ta80 100%20 5183 Tal 5547  5595.7 8.0 0.5 6259
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8.2.3 Limitations of Adaptive Scheduling

For up to 150 operations in a JSP we obtain quasi-optimal results and almost
negligible deviations from the mean makespan. Therefore runtimes of less
than 1 minute suffice on typical workstation platforms. In spite of the fact,
that for e.g. a 10 x 10 problem instance we have a search space of already
(10!)0 < 4-10%, the GA3 guides the search properly towards quasi-optimal
solutions by taking at most 10000 samples of the search space.

For larger problem instances of up to 400 operations, the relative error
slightly increases although still near-optimal results are obtained. The stan-
dard deviation of the makespan is still very low. This proofs the GA3 to be
a robust optimization strategy. The runtime needed here does not exceed
5 minutes even in extreme cases.

For larger problem instances (> 400 operations) the relative error in-
creases drastically. Surprisingly, the deviation of the makespan is still very
low. Robust population based search obtains these small deviations at the
expense of an increasing runtime. For very large problems of the order of
100 x 20 operations roughly 1.5 hours runtime are needed for a single run.

In spite of the encouraging results obtained for small and medium sized
problems, we doubt whether genetic search can be applied either to problems
of still larger size or to more difficult instances. We see limits of applicability
because of the arising complexity “catastrophe”, compare Kauffman (1993).

— The larger the problem instance, the smaller the fitness contribution of
a single building block to the overall fitness becomes. The selective force
tending to preserve building blocks in the gene pool becomes weaker, be-
cause building blocks cannot be easily identified by the fitness value of a
solution. Since schemata are disrupted at the same rate in small and large
problems but selection looses much of its power when the problem size
increases, we see a limit of useful adaptation capability.

— The difficulty of a problem mainly depends on the number of conflicting
constraints? involved. Conflicting constraints cause epistasis and epistasis
in turn cause genetic operators to distort solution characteristics. Therefore
an increasing degree of conflicting constraints leads to a less predictable
fitness contribution of building blocks. Again, the selective force becomes
weaker because building blocks cannot be identified properly by selection.

In conclusion, GAs are well suited for small and medium sized problems.
For extremely large, highly constrained or difficult problems the results are
reasonable, but not necessarily near-optimal.

2 Potentially conflicting constraints do not necessarily conflict in the subset of
promising solutions of the search space. For quadratic problem instances and/or
instances where jobs tend to compete for machines, many potentially conflicting
constraints become effective. Therefore these problems are extremely difficult to
solve, although the number of potentially conflicting constraints does not differ
to the one of instances which are easy to solve.



9. Conclusions and Outlook

Throughout this thesis, we iteratively describe the development of a Genetic
Algorithm for the solution of the JSP, a hard combinatorial optimization
problem of practical relevance.

First we evaluate the opportunities of the components of the GA sepa-
rately, before we choose one of the alternatives for each component to be
implemented. This “iterative” research finally leads us to the approach of
behavior driven interactions of GA individuals in a structured population,
introduced under the name GA3 in Chap. 7.

To our knowledge, the GA3 produces the best results of all GAs ap-
proaches reported in literature. Chap. 8 lists the results obtained for the GA3
on 162 available benchmark problems. In spite of the encouraging results for
small and medium sized benchmarks, very large and difficult instances cannot
be solved to a near-optimal solution in an acceptable runtime.

In order to assess whether Evolutionary Search can satisfy the require-
ments of manufacturing systems, in the following we discuss both, the proper-
ties of real world problems and the general properties of Evolutionary Search.

9.1 The Real World is Different

Challenging benchmarks are generated in a way that the various jobs tend to
compete for the same machine. At a first glance, competing jobs obey the re-
quirements of a manufacturing system, because products are often produced
in a similar fashion and therefore jobs follow a similar processing order. In
contradistinction to theory, real manufacturing is more of a “sustained pur-
suit” with release times and due dates for jobs. We assume jobs to be released
continuously over time. From this viewpoint an extreme competition of jobs
for machines seems unrealistic, because jobs are released at different points
of time.

Recently, Bierwirth et al. (1995) decomposed a dynamic shop floor into
subsequent static ones by means of a temporal decomposition. The resulting
problems consist of operations, whose jobs are released but have not been
processed so far. These problems are small and relatively easy to solve. In this
more realistic situation a problem type like the one modeled in challenging
benchmarks hardly occurs.
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In real world applications we may face additional constraints which are
neglected by the JSP model. But we will hardly find the peculiarities of
benchmark problems in manufacturing systems. Therefore several objections
about benchmark problems can be raised in accordance with Pinedo (1995):

— In benchmark problems the processing times are typically distributed uni-
formly over a large range. Processing times assigned at random are drasti-
cally different from the technical requirements of most, shop floors. In real
world applications we will find typical processing times of operations to be
processed on one machine

— Often, benchmark problems are of quadratic type. Real world problems are
rarely quadratic. Typically we will find many more jobs than machines in
a manufacturing system. Even for short scheduling periods the number of
jobs will exceed the number of machines involved.

— The technological constraints of jobs in benchmarks are either uniformly
distributed or artificially constructed by model builders in order to obtain
“challenging” problems. In shop floors we will find some work flow of jobs
through the machines obeying “natural orders” of assembly sequences etc.

— In order to be a challenge for modern heuristic techniques benchmark prob-
lems up to 2000 operations are proposed. In practice we have to deal with
stochastic events like machine breakdowns. Therefore such large problems
are typically decomposed into considerably smaller sub-problems in order
to maximize reliability and to avoid expensive re-scheduling in case of a
breakdown.

Recently, Taillard (1994) compared benchmark- and real world problems
for the Quadratic Assignment Problem, occuring e.g. in location- and flow op-
timization. Taillard showed, that in benchmark problems the local optima are
widely spread throughout the entire search space, whereas in real world prob-
lems local optima tend to populate certain small areas of the search space.
Reeves (1993) reports a similar observation for the Vehicle Routing Problem.
For the Flow Shop Problem Reeves argues that in real life there should be
a gradient of job processing times across machines, or that there should be
correlation between the processing times of jobs on the same machine.

For the JSP Amar and Gupta (1986) have shown that the distributions
typically chosen for generating benchmark problems hardly result in prob-
lems which reflect the problem structure of real world problems. Amar and
Gupta compared benchmark problems with problems taken from an existing
job shop floor which they regard to be a typical representative of medium
sized production factories in the United States. They showed in distinction
to benchmark problems real world problems show a high degree of problem
structure and consequently the performance of algorithms differs strongly
over real world and benchmark problems.

A problem is said to have structure, if good (i.e. near-optimal) solutions
of a problem share a considerable amount of solution characteristics, i.e. they
have a small distance to each other in terms of the search space.
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What makes JSP benchmarks hard to solve for any optimization strat-
egy is that benchmark problems show almost no problem structure. In other
words, the makespan of a solution (partial ones included) does hardly cor-
relate with its distance to the argument of the optimal solution. Under this
circumstances the heuristic search is easily misguided and a sophisticated
control mechanism is needed.

The above considerations imply a substantial degree of problem structure
and a relatively small size of real world problems. We therefore assume that
the JSP benchmarks considered in this thesis are not typical for the type of
problem we have to deal with in practice.

9.2 GAs and Real World Scheduling

Several attempts have been made to integrate GAs into an overall classifica-
tion of heuristic search techniques. Attention is paid to the role of the genetic
operators which produce neighboring solutions in analogy to Local Search
techniques. Vaessens et al. (1995) describe the GA to perform a “hyper-
neighborhood” search by means of crossover. Jones and Forrest (1995) intro-
duce a state-transition graph model for genetic operators in order to describe
the search process of a GA.

We also underline the important role of genetic operators for successful
adaptation. But we primarily insist on the importance of the GA’s control
structure in order to assess the GA performance. This view has important
impacts on the effective suitability of GAs for scheduling problems:

— Genes represent solution characteristics of the underlying optimization
problem. Evolution either proliferates or drives out genes from the gene
pool by means of selection. Thus, selection is responsible for evolving prob-
lem structure in terms of solution characteristics. If a problem has no struc-
ture, selection cannot work efficiently and genetic adaptation fails.

— Significant changes of gene frequencies in the gene pool take place slowly
over the generations. Therefore spontaneous improvements due to genetic
drift take a long time to influence the population. Whenever a specific direc-
tion of search is introduced, such that certain gene constellations dominate
the gene pool, the direction of search is irrevocable.

— Frequency changes in the gene pool are caused by selection which in turn
is driven by the fitness observed in the population. Since the fitness is a
relative performance measure, the GA does not attempt to generate overall
improving solutions. Instead it rather tends to converge at a level of inferior
solution quality.

From the above considerations the following conclusions can be drawn.
Genetic adaptation will work sufficiently well only in the presence of a high
degree of problem structure. Even then genetic adaptation will be slow and
the results obtained are not necessarily near-optimal.
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In this thesis we have shown that genetic operators should be tailored in
accordance with the properties of the underlying optimization problem. In
the presence of epistasis due to problem specific constraints appropriate op-
erators can hardly be found. Epistatic effects distort a proper recombination
of parental solutions in order to assure the feasibility of offspring. A remedy
is the incorporation of a base heuristic which uses domain knowledge in order
to improve the average fitness. This causes an increase of selection pressure
which in turn results in a persistent search for improved solutions.

The advantage of spatially isolated sub-populations is twofold. The prob-
lem structure of several promising regions of the search space is explored
simultaneously. The adaptation process in small sub-populations is consider-
ably faster comparable to larger populations. Nevertheless, progress is limited
because of inbreeding within the sub-populations. The attitude inheritance
model avoids local convergence and therefore maintains a successful gene flow
between the various sub-populations. The individuals ability to react on spe-
cific environmental conditions provides a more effective control structure of
the GA at almost negligible costs.

However, GAs guide the search loosely which results in a relatively in-
efficient search. More tailored control structures than the one provided by
genetic adaptation are needed in order to obtain optimal solutions within an
acceptable runtime. On the other hand more tailored control structures are
hardly capable to cope with varying objectives or additional constraints.

The currently most efficient algorithms for solving the JSP combine Lo-
cal Search with Partial Enumeration. Although both techniques have been
successfully applied to many combinatorial problems their key features ap-
pear highly problem dependent. Therefore it remains questionable whether
such tailored techniques can be applied to production scheduling dealing with
more intricate constraints than considered in this thesis and other objectives
than the reduction of the makespan.

In conclusion we regard genetic adaptation to be a weak but robust opti-
mization technique which can meet the requirements of manufacturing sys-
tems. GAs are capable to handle real world problems because the genetic
representation of precedence relations among operations fits the needs of real
world constraints in production scheduling. Moreover, GAs are applicable
to a wide array of varying objectives and therefore they are open to many
operational purposes.
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