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a b s t r a c t

In this paper we consider the job shop scheduling problem with total weighted tardiness objective
(JSPTWT). This objective reflects the goal to achieve a high service level which is of increasing
importance in many branches of industry. The paper concentrates on a class of baseline heuristics for
this problem, known as neighborhood search techniques. An approach based on disjunctive graphs is
developed to capture the general structure of neighborhoods for the JSPTWT. Existing as well as newly
designed neighborhoods are formulated and analyzed. The performance and search ability of the
operators (as well as combinations thereof) are compared in a computational study. Although no
dominant operator is identified, a transpose-based perturbation on multiple machines turns out as a
promising choice if applied as the only operator. Combining operators improves the schedule quality
only slightly. But, the implementation of operators within a meta-heuristic enables to produce a higher
schedule quality. A structural classification of neighborhood operators and some new analytical results
are presented as well.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The vast majority of research in job shop scheduling is dealing
with problems where finding a schedule with a minimum make-
span is pursued [2]. In recent years, however, also tardiness
objectives have received increasing attention because on-time
order fulfillment is of predominant importance in modern pull-
oriented supply chain systems. Keeping job due dates is a
prerequisite for serving customers within the promised delivery
time and avoiding out-of-stock costs. In a situation where not all
job due dates can be met, the minimization of the total (weighted)
tardiness of the jobs turns out as an appropriate objective for
machine scheduling.

In this paper we study basic neighborhood search techniques,
originally developed to solve classic job shop problems (JSP). We
analyze their performance in the context of the total weighted
tardiness objective. The considered neighborhood search techni-
ques constitute a class of baseline heuristics for solving complex
machine scheduling problems in general. At its core, a neighbor-
hood search technique performs a particular perturbation of a
given schedule where the new schedule replaces the former
schedule provided it is of better quality. The way in which a

perturbation is executed defines a set of neighboring schedules,
which is briefly referred to as a neighborhood definition. Different
neighborhood definitions have been proposed for the JSP and
tested in combination with meta-heuristics like Simulated Anneal-
ing and Tabu Search, see e.g. [9,23]. Later, further neighborhood
definitions have been proposed and also implemented for solving
the job shop scheduling problem with total weighted tardiness
objective (JSPTWT), see e.g. [6,26].

The aim of this paper is manifold. First we present a generic
approach which allows us to describe all known neighborhood
definitions for scheduling problems in a systematic fashion. The
approach is based on the well known disjunctive graph model
which is adapted to the requirements of the JSPTWT. New
neighborhood definitions are derived from our generic approach
by identifying schedule perturbations which have not been con-
sidered so far. Finally, we investigate key characteristics for the
proposed neighborhood definitions which are expected to indicate
differences in their behavior and search quality. The intention is to
provide support on selecting and implementing neighborhood
search operators within powerful scheduling systems.

The paper is organized as follows: the next section introduces
the problem under consideration and reviews the relevant litera-
ture. Section 3 presents the modified disjunctive graph model
forming a framework for the different neighborhood operators
described in Section 4. The feasibility guarantee and the connec-
tivity property of neighborhoods are investigated analytically in
Section 5. In Section 6, the search quality and performance of the
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various neighborhoods are assessed within a comprehensive
computational study where the operators are tested by imple-
menting them in a steepest descent algorithm as well as a simple
simulated annealing algorithm. Section 7 concludes the paper.

2. Problem definition and literature review

In the standard JSP we are given n jobs that have to be
processed on m machines. Each job consists of m operations that
have to be processed in a given technological sequence, i.e. the
processing of an operation is restricted to a preassigned machine.
Preemption during the execution of an operation as well as
overlapping is not allowed. The processing time of the i-th
operation of job j is denoted by pij. The standard JSP is to find a
schedule that minimizes the completion time of the latest finished
job, also referred to as the makespan of a schedule.

The JSPTWT is an extension of the standard JSP where the
processing of job j cannot start before a given ready time rj and should
be finished no later than a given due date dj. The objective function
value of a schedule is defined as TWT ¼ Pn

j ¼ 1 wj �max f0; cj�djg,
where cj denotes the completion time of job j and wj denotes its
weight.

In contrast to the standard JSP, the JSPTWT has received much less
attention in the literature. Beside a Branch-and-Bound approach
proposed by Singer and Pinedo [20], research mainly concentrates
on the development of heuristics. Specific priority rules, e.g. the
Apparent Tardiness Cost rule (ATC) [24], have been proposed for
constructing schedules such that due dates are taken into account. A
corresponding survey of due date related dispatching rules is provided
by Jayamohan and Rajendran [11]. A Shifting Bottleneck Procedure for
the JSPTWT is presented by Pinedo and Singer [19] where single
machine subproblems are solved by a due date related dispatching
rule. A tabu search approach to the JSPTWT with unit job weights is
proposed by Armentano and Scrich [3]. For local search, the critical
transpose neighborhood operator proposed by van Laarhoven [22] is
used. Local search is also employed in the large step random walk
procedure of Kreipl [13]. In the intensification phase, a local optimum
is determined using the neighborhood operator of Matsuo et al. [16].
In the diversification phase, a new feasible start solution is generated
by perturbing the local optimum doing a number of random neigh-
borhood moves. Zhang and Wu [26] propose a simulated annealing
algorithm which incorporates a neighborhood operator relying on a
block property. A hybrid heuristic has been developed for the JSPTWT
by Essafi et al. [10] who combine a genetic algorithmwith local search
using the neighborhood operator of van Laarhoven [22], called genetic
local search. Another hybrid approach is presented by Bülbül [6] who
integrates a tabu search with a shifting bottleneck procedure.

The above review indicates that heuristic approaches to the
JSPTWT are often based on local search mechanisms although local
search is time-consuming due to the need of calculating the objective
function value of a newly produced schedule. Therefore, Mati et al.
[15] have developed a fast estimation method for a lower bound on

the objective function value which drastically accelerates the evalua-
tion of moves performed with the neighborhood operator of van
Laarhoven. Similarly, Braune et al. [7] have developed an evaluation
method for schedules generated with the neighborhood operator of
Dell'Amico and Trubian [9]. Based on neighborhood search techni-
ques, a lot of progress has been made in solving large-scale JSPTWT
instances over the last decade. Still, there is a lack of knowledge
regarding the impact of different neighborhood operators incorpo-
rated in the scheduling procedures.

3. Disjunctive graph model

The disjunctive graph model is a fundamental problem represen-
tation form for the standard JSP, see Adams et al. [1]. In this section,
we briefly revisit the transformation of the disjunctive graph model
for the JSPTWT as proposed by Pinedo and Singer [19] as well as
Kreipl [13]. Furthermore, we propose a slight modification of their
graph model which allows us to gather the total tardiness value of a
solution directly from its graph representation.

The standard JSP is represented by a disjunctive graph
G¼ ðV ;A; EÞ, where the i-th operation of job j is denoted by node
ði=jÞAV . The set of nodes is completed by two dummy nodes,
namely the start node 0 and the finishing node 1. The set of
operations of job j is connected by directed arcs ½ði=jÞ; ðiþ1=jÞ�AA
representing its technological machine sequence. For every job j,
there is one directed arc connecting the start node with the first
operation node, ½0; ð1=jÞ�AA, and one further directed arc connect-
ing the last operation node with the finishing node, ½ðm=jÞ;1�AA. A
weight is given for every arc in A which represents the processing
time of an operation. Arcs ½0; k�AA have a weight of 0. The
precedence relation between operations k; lAV of different jobs
being processed on the same machine is represented by pairs of
disjunctive arcs ½k; l�; ½l; k�AE. By selecting one arc of each pair of
disjunctive arcs we obtain a subset E0 of E which describes a
feasible schedule if and only if the corresponding graph
G0 ¼ ðV ;A; E0Þ is acyclic. The length of the longest path from 0 to
1 in G0 determines the makespan of the represented schedule.

For the JSPTWT, [13,19] have modified the disjunctive graph model
by introducing an individual sink node Bj for every job j (instead of the
common node 1) which measures the completion time of the job. In
addition to this, we introduce a new sink node denoted Fj for every job
j which is simply appended to Bj. Furthermore, arcs ½0; Fj� and ½Bj; Fj�

Fig. 1. JSPTWT: (a) Disjunctive graph G (dashed line¼pair of disjunctive arcs), (b) feasible solution as directed graph G0 .

Table 1
Data to the example 3�3 instance.

Job data Op. 1 Op. 2 Op. 3

j wj rj Mch. p1j Mch. p2j Mch. p3j dj

1 1 0 1 3 2 4 3 4 12
2 2 2 3 2 1 3 2 4 15
3 1 2 1 5 3 5 2 2 18
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are added to the directed arc set A. Weights 0 and �dj are assigned to
these arcs to compute the tardiness of job j as the non-negative
distance between its completion time and due date. Additionally, the
weight of arc ½0; k�AA represents the ready time of the jobwith k as its
first operation. Fig. 1(a) shows the disjunctive graph G for a small
instance of the JSPTWT, defined in Table 1. We can represent a feasible
schedule of the JSPTWT by selecting one arc of each pair of disjunctive
arcs leading to a directed acyclic graph G0. The graph representation
is shown for a randomly chosen solution for the JSPTWT instance in
Fig. 1(b). To compute the total weighted tardiness of this schedule, we
have to determine for every job j a longest path starting at 0 and
ending at the sink node Fj. The length of the longest path from 0 to Fj
corresponds to the tardiness of job j. For example, considering job 1 in
Fig. 1(b), the longest path leading from 0 to its completion node B1 is
½0; ð1=1Þ; ð1=3Þ; ð2=3Þ; ð3=1Þ;B1� which is of length c1 ¼ 17. The tardi-
ness of job 1 is determined by the length of the longest path from 0 to
F1, given by t1 ¼maxf0; c1�d1g ¼ maxf0;17�12g ¼ 5. Similarly, the
completion of job 3 is determined by the longest path ½0; ð1=1Þ;
ð1=3Þ; ð2;2Þ; ð3=2Þ; ð3=3Þ;B3� from node 0 to B3 which is of length
c3 ¼ 17. For job 3, however, the longest path leading from 0 to node F3
consists just of arc ½0; F3� because t3 ¼maxf0; c3�d3g ¼ maxf0;
17�18g ¼ 0. In other words, job 3 is on time.

Following Nowicki and Smutnicki [18], a longest path is decom-
posable into critical arcs and critical blocks. We refer to an arc of a
longest path as a critical arc if it connects two operations that are
processed consecutively on the same machine. A critical block is defined
as a sequence of operations connected by a maximum chain of critical
arcs belonging to one longest path. Note that while assessing the total
weighted tardiness of schedule G0, all critical arcs and blocks are
identified during the construction of the n longest paths.

4. Neighborhoods for job shop scheduling

The concept of disjunctive graphs is fundamental to the
definition of local search neighborhoods. A neighborhood defini-
tion typically provides a small set of similar solutions that enable
the move from a current feasible solution to a new and hopefully
better feasible solution [2]. Such nearby solutions are generated
according to a defined perturbation scheme which is applied by a
neighborhood operator. The most basic perturbation is the reversal
of one critical arc in the disjunctive graph representation. This
perturbation can potentially improve the schedule quality but it
cannot destroy the schedule's feasibility. More complex perturba-
tion schemes promise to find even larger improvements of a
schedule but they often cannot guarantee schedule feasibility.
The approach adopted in this paper is to detect cycles by
iteratively determining the starting times of all operations from
their predecessors. The run-time complexity of this test is OðnmÞ,
see Taillard [21]. Usually either the best improving feasible solu-
tion or the first improving feasible solution found in the neighbor-
hood of a schedule replaces this schedule. Continuing this
procedure ends up in a local optimum, which might be the global
optimum in rare cases.

4.1. Old neighborhoods

Various neighborhood definitions have been proposed for
machine scheduling problems, see Table 2. In this section we
briefly reflect the corresponding schedule perturbation schemes
using the disjunctive graph approach.

CT: The critical transpose neighborhood of van Laarhoven [22]
defines the elementary perturbation of a schedule which is a
reversal of one critical arc, also known as interchange [16] or swap
[15] of two adjacent operations. van Laarhoven et al. [23] have
shown that the resulting schedule is always feasible with respect
to the perturbation scheme of the operator. Moreover, the CT
operator can only reduce the length of a longest path in case that
the reversed critical arc is positioned at the beginning or end of a
critical block. Otherwise, when the reversed arc is inside the
critical block, it does not change the starting time of the succeed-
ing operation in the critical block, and thus, it does not reduce the
length of this path. This observation motivates a simple modifica-
tion of the CT to yield a dominating performance. The modified
operator, called CET, is described below in detail. It substitutes the
CT operator in the computational investigations.

CET: Since the reversal of critical arcs inside a critical block
cannot yield an improvement, Nowicki and Smutnicki [18] have
proposed a reduced CT neighborhood, called critical end transpose
neighborhood, which reverses only critical arcs at the beginning or
at the end of a critical block. Fig. 2 shows an example with a
critical block ½u1;u2;u3;u4� consisting of three critical arcs. The CET
operator reverses either arc ½u1;u2� or ½u3;u4� as it is depicted by
the gray colored arc in Fig. 2. Since the CET neighborhood defines
an efficient subset of the CT neighborhood, it always produces
feasible schedules.

CETþ2MT: Matsuo et al. [16] have enhanced the idea of CET by
reversing additional arcs related to predecessors and successors in
the machine sequences, see Fig. 3. Based on the reversal of the
critical arc ½u1;u2�, two further machine arcs might be reversed
simultaneously provided that the following conditions hold. The
machine arc ½x1; x2� (with x1 being the job successor operation of
u1) is reversed if and only if (i) x1 is started before the completion
of u2 and (ii) x1 is completed directly before the start of x2. The

Table 2
List of neighborhood operators proposed in the literature. The naming of the neighborhoods refers to the denotation introduced by Anderson et al. [2].

Abbrev. Name Authors Ref.

CT Critical Transpose van Laarhoven [23]
CET Critical End Transpose Nowicki, Smutnicki [18]
CETþ2MT Critical End Transpose þ 2-Machine Transpose Matsuo et al. [16]
CE3P Critical End 3-Permutation Dell'Amico, Trubian [9]
CEI Critical End Insert Dell'Amico, Trubian [9]
CSR Critical Sequence Reverse Zhang, Wu [26]

Fig. 2. CET move.
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machine arc ½y1; y2� (with y2 being one of the job predecessor
operations of u2) is reversed if and only if (i) the direct job
predecessor of u2 is not completed before the start of u1, (ii) y2
is started immediately after the completion of y1, and (iii) all
operations between y2 and u2 are processed without idle time.
These accompanying arc reversals attempt to break up blockings in
the longest path which result from the reversal of the critical arc
½u1;u2�. Accordingly, this operator is called critical end transpose þ
2-machine transpose operator. A feasibility guarantee also holds for
this operator which is shown in the Theorem 1 (see Section 5).

CE3P: The reversal of one critical arc can be viewed as a
2-permutation of two adjacent operations. Dell'Amico and Trubian
have generalized this idea by the critical end 3-permutation
operator. Additional to the two operations at the beginning (or
the end) of a critical block, the directly preceding (or directly
succeeding) operation on the machine is taken into account, even
it does not belong to a longest path. A neighboring schedule is
generated by changing the order of three consecutive operations
by means of a 3-permutation. However, only 3 of the 6 existing

3-permutation are taken into consideration, namely those which
reverse the two operations at the beginning (or at the end) of the
critical block. For example, the order of the consecutive operations
u1;u2 and u3 at the beginning of a critical block can be changed by
means of one of the 3-permutations ½u2;u1;u3�, ½u2;u3;u1� or
½u3;u2;u1�. The last perturbation is shown in Fig. 4. As this operator
sometimes produces infeasible solutions, the feasibility test is
executed after the schedule generation. In case of an infeasible
neighboring schedule, the performed perturbation is discarded.

CEI: A further neighborhood operator proposed by Dell'Amico
and Trubian [9] attempts to shift an operation within a critical
block. The new position of this operation in the block is deter-
mined as the most distanced insert position that still yields a
feasible schedule. We call this operator the critical end insert
operator. In order to ensure that the length of the longest path is
effected by a perturbation, operations inside a critical block are
only shifted to the first or last position of the block. In the example
of Fig. 5, the operation u3 is shifted to the front of the critical block,
resulting in the new sequence ½u3;u1;u2;u4�. Note that CEI already
includes a feasibility test to ensure only feasible schedules can be
generated. However, the perturbation scheme of the operator
basically enables generating infeasible schedules which is why
we classify it as an operator without feasibility guarantee.

A variant of CEI has been proposed by Balas and Vazacopoulos
[4]. Instead of searching the most distanced feasible insert posi-
tion for an operation, they determine the most distanced insert
position for which feasibility is granted with regard to path
conditions for cyclic aviodance. This variant is faster but can fail
in finding the most improving CEI move. Therefore, we omit it in
this study.

CSR: The idea to invert a connected sequence of operations in a
critical block has been proposed by Zhang and Wu [26]. In the
example of Fig. 6, four operations of the critical block u1;…u4 are
considered as the sequence to be inverted. The new sequence
½u4;u3;u2;u1� establishes the reversal of all critical arcs between u1
and u4. The described operator is called critical sequence reverse
operator. Obviously, CSR guarantees the generation of feasible
schedules for sequences of only two operations which corresponds
to an ordinary CT perturbation [25]. Applying the operator to
longer sequences requires a feasibility test to be executed in each
step, i.e., after a single arc has been reversed.

4.2. New neighborhoods

We introduce six new perturbation schemes, which extend and
supplement the above described concepts. Table 3 presents an
overview of these neighborhoods.

ECET: Instead of inverting either the first or the last arc of a
critical block (CET), the extended critical end transpose neighbor-
hood inverts the first or the last arc or both simultaneously, see
Fig. 7. Note that such a perturbation is identical with a CET move
for blocks consisting of less than three critical arcs. The resulting
schedule is always feasible as will be shown in the Section 5.

ICT: Large critical blocks basically determine the length of a
longest path. The idea of the iterative critical transpose neighbor-
hood is to break up long critical blocks by inverting every second
arc, starting with the first arc of the block. Fig. 9 shows an ICT
move for a block of length 5, inverting the first, the third and the
fifth arc. The feasibility guarantee for ICT is shown in the next
section as well.

CE4P: Like CE3P, this perturbation scheme considers either the
first or the last arc of a critical block. But different to CE3P, both,
the directly preceding and the directly succeeding operations of
the critical arc are involved in the perturbation which leads to the
critical end 4-permutation neighborhood. Consider four such con-
secutive operations u1;…;u4, as shown in Fig. 8. To ensure that at

Fig. 3. CETþ2MT move.

Fig. 4. CE3P move.

Fig. 5. CEI move.
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least the order of the two inner operations u2 and u3 is inverted
(which represents the initial critical arc), the operator can generate
a total of 12 different 4-permutations. Of course, like CE3P, CE4P
possibly produces infeasible schedules. Therefore, only those
permutations are taken into consideration which pass the feasi-
bility test.

DOCEI: The double outwards critical end insert neighborhood
selects two consecutive operations in a critical block and inserts
the former operation at the end of the critical block and the latter
operation at the beginning of the critical block. Note that this
perturbation scheme extends the concept of the CEI operator.
Infeasible schedules are omitted. An example is shown in Fig. 10
for a block of length 5, where the consecutive operations u3 and u4
are first excluded and then reinserted at the end and the beginning
of the critical block, which leads to the new operation sequence
u4;u1;u2;u5;u6;u3. Being an extension of CEI, the feasibility
guarantee does not hold for DOCEI.

DICEI: The perturbation by the double inwards critical end insert
operator works like DOCEI with the exception that the selected
consecutive operations are not shifted outwards to the border of

the critical block, but the border operations are shifted inwards
between the selected operations. Fig. 11 shows the same example
considered for DOCEI before, now leading to the new operation
sequence u2;u3;u6;u1;u4;u5. Being an extension of CEI, the feasi-
bility guarantee does not hold for DICEI.

CEIþ2MT: The critical end insert þ 2-machine transpose neigh-
borhood operator, first introduced in [14], combines a CEI move
with a two machine transpose move (like in CETþ2MT). In other
words, the perturbation scheme joins a shift of an operation with
two additional arc reversals. An example is illustrated in Fig. 12.
Here, operation u2 is shifted to the end of the critical block in CEI
manner. Furthermore, to break up blockings in the schedule, two
additional arcs are reversed which belong to the job successor of
the shifted operation u2 and the job predecessor of its succeeding
operation u3 in the critical block. Computational experiments have
shown that shifting an operation to the beginning of the block
rarely leads to improvements. A possible explanation for this could
be that a shift of an operation to the beginning may cause multiple
critical operations to start later while shifting an operation to the
end may allow these operations to start earlier. Therefore, the
operator is designed by shifting operations always to the end of
the block. A feasibility guarantee does not hold for CEIþ2MT like
for CEI and its other extensions.

Table 3
List of new neighborhood operators.

Abbrev. Name Derived from

ECET Extended Critical End Transpose CET
ICT Iterative Critical Transpose CET
CE4P Critical End 4-Permutation CE3P
DOCEI Double Outwards Critical End Insert CEI
DICEI Double Inwards Critical End Insert CEI
CEIþ2MT Critical End Insert þ 2-Machine Transpose CEI, CETþ2MT

Fig. 7. ECET move.

Fig. 8. CE4P move.
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Fig. 9. ICT move.

Fig. 6. CSR move.
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Based on the above definitions, the following inclusions of the
neighborhood operators are obvious:

CETDCTDCSR
CETDCE3PDCE4P
CETDECET
CETDCEI

A classification of the proposed neighborhoods is provided by
the underlying principle of generating new schedules using
transpose-based, insertion-based and sequence-based perturba-
tions. Moreover, changing the order of operations of a schedule on
a single or on multiple machines can be distinguished. The
corresponding scheme is shown in Table 4. Note that the operators
CE3P and CE4P appear in the class of sequence-based operators
because their generation scheme is based on sequences of three
and four operations, respectively.

5. Theoretical properties of neighborhood operators

Essential characteristics of neighborhood definitions are (i) the
feasibility guarantee of the new solution, (ii) the connectivity of the
underlying solution space, (iii) the size of the neighborhood, and (iv)
the improvement rate observed for the obtained neighboring solutions
[17]. While properties (i) and (ii) can be investigated analytically,
properties (iii) and (iv) require empirical evidence taken from compu-
tational experiments. In this section, we review the existing knowl-
edge about feasibility guarantees and the connectivity properties and
further exhibit some new analytical results for the neighborhood
definitions introduced in Sections 4.1 and 4.2.

5.1. Feasibility guarantee

The most basic perturbation of a schedule is performed by CT
which simply reverses two adjacent critical operations (i.e. one
critical arc). As proved by van Laarhoven et al. [23], a CT
perturbation always results in a feasible schedule. Lemma 1
extends this result towards the reversals of adjacent non-critical
operations, provided the operations are immediately started on
the same machine without idle time. We use Lemma 1 to prove
Lemma 2 and Theorem 1. Theorem 1 proves the feasibility

guarantee for CETþ2MT. Based on Lemma 2, feasibility guarantees
are derived for ECET and ICT. The second Lemma claims that two
simultaneous reversals of machine arcs (belonging to the same or
different machines) as defined by two pairs of adjacent operations
that are all distinct, will also lead to a feasible schedule, provided a
path exists which connects the two machine arcs.

Lemma 1. Let G0 be a directed graph representing a feasible active
schedule. Furthermore, let v and w be two not necessarily critical,
adjacent operations on a machine that are processed immediately
after each other without intermediate machine idle time. Then, no
path other than ½v;w� can exist from v to w in G0, and the reversal of
arc ½v;w� always produces a feasible solution.

Proof. Assume that there is a path P leading from v to w. This path
must contain at least two or more other operations, denoted by

6

u

u

1

2

u

u

3

4

u

u

5

Fig. 10. DOCEI move. Fig. 11. DICEI move.

Fig. 12. CEIþ2MT move.

Table 4
Classification of neighborhood operators based on perturbation schemes

Transpose-based Insertion-based Sequence-based

On single machine CT/CET CEI CE3P
ECET DOCEI CE4P
ICT DICEI CSR

On multiple machine CET þ 2MT CEIþ2MT
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o1;…; or ðrZ2Þ, because it runs over a different machine. Due to
precedence relations given in path P ¼ ½v; o1;…; or ;w�, the proces-
sing of w can start at the earliest after the completion of or. Since
the processing of or starts after the completion of v, vaor , and
por 40, the assumption of no intermediate machine idle time
between the processing of v and w is violated. Hence, no further
path can exist between v and w, and reversing arc ½v;w� cannot
create a cycle.□

Lemma 2. Let G0 be a directed graph representing a feasible active
schedule. Furthermore, let ½v1;w1� and ½v2;w2� be two not necessarily
critical arcs in G0 that represent two precedence relations on arbitrary
machines with v1;w1; v2;w2 all distinct. Assume that there is no
intermediate idle time between the processing of v1 and w1 as well as
v2 and w2 on their machines, and there exists a path P ¼ ½w1;…; v2�
leading from w1 to v2. Then, reversing both arcs simultaneously
always produces a feasible solution.

Proof. Suppose that reversing both arcs ½v1;w1� and ½v2;w2�
creates a cycle C. This cycle has to contain both reversed arcs,
because otherwise, the exclusive reversal of only one arc already
produces a cycle which is precluded by Lemma 1. Let
C¼ ½w1; v1; P1;w2; v2; P2;w1� denote the cycle with P1 and P2 being
paths connecting v1 with w2 and v2 with w1, respectively. Note
that both these paths must already exist in G0, i.e. before ½v1;w1�
and ½v2;w2� have been reversed. Therefore, due to the existence of
P ¼ ½w1;…; v2� in G0, also path ½w1;…; v2; P2;w1� must exist in G0

violating the assumption that G0 contains no cycle.□

It is important to mention that the perturbation considered in
Lemma 2 cannot be analyzed by two separate arc reversals as it
requires the two arcs to be connected by a path. From Lemma 2 it
is clear that a feasibility guarantee holds for the neighborhood
operator ECET. The argumentation of Lemma 2 can also be
extended to a chain of more than two arcs connected by a path
that are reversed in a new schedule. In this way, we also derive a
feasibility guarantee for the neighborhood operator ICT.

Theorem 1. Let G0 be a directed graph representing a feasible active
schedule. Then, neighborhood operator CETþ2MT always produces
feasible solutions.

Proof. Without loss of generality, we suppose that exactly three
arcs are reversed by the perturbation. Let d¼ ½x1; x2�, e¼ ½u1;u2�,
and f ¼ ½y1; y2� denote the relevant arcs in the considered pertur-
bation (see Fig. 3), and let d0; e0 and f 0 denote the corresponding
reversed arcs in the new schedule. Again, we assume that the new
schedule contains a cycle C. In the following, we analyze how this
cycle could look like.

Case 1: Cycle C contains none of the reversed arcs d0; e0 and f 0.
Therefore, C must already exist in G0 which contradicts
the feasibility of the origin schedule.

Case 2: Cycle C contains exactly one of the reversed arcs. Since
there is no immediate machine idle time in the
processing of the adjacent operations corresponding
to the three arcs, this would mean a violation of
Lemma 1.

Case 3: Cycle C contains exactly two of the reversed arcs. Let,
for instance, C contain d0 and e0 (see Fig. 13, left side).
Then, the cycle must have the form C¼ ½e0; P1; d

0; P2; e0�.
Since, P1 and P2 already exist in G0 and are thus not
effected by the perturbation, the path ½u1; x1; P2� is
longer than the path leading from u1 to u2 in G0. Hence,
arc e cannot be a critical arc in G0. This argumentation
is the same in case that e0 and f 0 or d0 and f 0 are
involved in the cycle.

Case 4: Cycle C contains all three reversed arcs. It can have
only one of the two forms C¼ ½f 0; P1; e0; P2; d

0; P3; f
0�

(see Fig. 13, right side), or C¼ ½f 0; P1; d
0; P2; e0; P3; f

0�. In
either cases, paths P1; P2 and P3 exist in G0 since they
are not effected by the perturbation. In the former
case, the length of path ½u1; x1; P3; y2;…;u2� exceeds
the length of arc e¼ ½u1;u2�. In the latter case, the
length of path ½u1; x1; P2;u2� exceeds the length of arc
e¼ ½u1;u2�. Anyway, in neither case arc e is a critical
arc in G0.

With the above contradictions, we obtain the feasibility guarantee of the
new schedule generated by the neighborhood operator CETþ2MT.□

The above findings on the feasibility guarantee of the neighbor-
hood operators are summarized in Table 6. We recognize from the
table that the feasibility guarantee holds only for the transpose-
based operators CT, CET, ECET, ICT and CETþ2MT.

5.2. Connectivity property

A neighborhood NB is called connected if any schedule can be
transferred into any other schedule by a finite sequence of NB
moves. With respect to optimization, a slightly weaker definition
is sufficient to assess the capabilities of a neighborhood [8]. A
neighborhood NB is called opt-connected if any schedule s0 can be
transferred into an optimal schedule sn by a finite sequence of NB
moves, i.e. a sequence of solutions s0; s1;…; sk exists with
stANBðst�1Þ for t ¼ 1;…; k and sk ¼ sn. For example, the neighbor-
hood CT, which performs the reversal of one critical arc, is opt-
connected for the standard JSP [23] as well as for the JSPTWT
[10,12]. Since CSR includes CT, also CSR is opt-connected. Dell'A-
mico and Trubian [9] have shown that CEI is opt-connected for the
standard JSP. Their proof can be transferred directly to the JSPTWT.

In the following, we demonstrate by a counterexample that
CET, ECET, ICT, CETþ2MT, CE3P, and CE4P are all not opt-
connected. For this, consider the problem instance in Table 5

Fig. 13. Left: d0 ; e0AC (Case 3a), Right: d0 ; e0 ; f 0AC (Case 4a).

J. Kuhpfahl, C. Bierwirth / Computers & Operations Research 66 (2016) 44–5750



consisting of four jobs and two machines. Note that the jobs have a
common due date and follow the same technological machine
sequence (we actually consider a flow shop problem). An optimal
schedule sn is obtained from Johnson's rule, shown on the left side
of Fig. 14. Note that there exist multiple optimal schedules to this
problem instance, where job 4 is always the one processed last on
machine 1. Given the schedule s0, shown on the right side of
Fig. 14, it is clear that it cannot be transferred into sn by means of
CET moves because CET merely allows reversing the two leftmost
and the two rightmost operations of the critical block
½ð1=1Þ; ð1=4Þ; ð1=3Þ; ð1=2Þ�. Therefore, operation ð1=4Þ will never
take the last position in the block meaning that job 4 cannot be
processed as the last job on machine 1. This, however, is a
necessary condition for schedule optimality in this problem
instance.

Taking a look at the schedule perturbation schemes performed
by ECET, ICT and CETþ2MT, it becomes obvious that the above
example disproves the opt-connectivity property for these neigh-
borhood definitions as well. For the CE3P and CE4P neighbor-
hoods, a similar counterexample is obtained by simply adding two
further jobs with processing time p1j ¼ 4 and p2j ¼ 2 to the above
flow shop instance and increasing the common due date respec-
tively. Sequencing these jobs on the machines in between of job
4 and job 3 in s0, it is clear that the optimal schedule cannot be
reached from the considered solution. Note that the argument is
always that job 4 cannot enter the last position (not even a
position in the latter half) of machine 1.

The counterexample presented above is not applicable to the
remaining neighborhood operators DOCEI, DICEI and CEIþ2MT.
Therefore, we classify the opt-connectivity property as “open” for
these operators. The analytical results regarding the feasibility
guarantee and connectivity property of neighborhoods are sum-
marized in Table 6. It is interesting to note that only the CT
neighborhood is opt-connected and provides a feasibility guaran-
tee at the same time.

6. Computational study

In this section we compare the performance of the proposed
neighborhood operators within a comprehensive computational
study. First, we describe the used test suite and then we report and
analyze the outcome of local search algorithms employing a single
operator as well as a combination of different operators.

6.1. Test suite

The computational tests are done using 53 benchmark instances
from Beasley's OR-Library [5]. The test suite contains 18 instances
with 10 jobs and 10 machines each (ABZ05-ABZ06, LA16-LA20, MT10
and ORB01-ORB10). The suite is supplemented by 35 instances with
10 to 30 jobs and 5 to 15 machines (LA01-LA15 and LA21-LA40),
where the job-machine-ratio varies from 1:1, 3:2, 2:1, 3:1 to 4:1. Due
dates and job weights are computed for all instances according to the
procedure of [20]. In our study we exclusively use the due date factor
f¼1.3 which creates relatively tight due dates using the formula
below:

dj ¼ rjþ f �
Xm
i ¼ 1

pij

$ %

The jobweights are set in the instances as follows: the first 20% of the
jobs receive a weight of 4, the next 60% of jobs receive a weight of 2,
and the final 20% of the jobs get a weight of 1. The objective function
value of the so far best known solutions to all 53 test instances is
reported by Essafi et al. [10]. Note that none of these instances has
been solved with a total weighted tardiness of zero so far. Less tight
due date factors of f¼1.5 and f¼1.6, which are also considered in
[10,20], are ignored in our study. In this way at least one job of a
feasible schedule gets tardy which enables a reliable assessment of
weak and strong performing neighborhood operators.

6.2. Local search with a single neighborhood operator

The eleven neighborhood operators proposed in Section 4 are
assessed in the following way. First, we compute a sufficiently large
sequence si ¼ ðs1i ; s2i ;…Þ of random start solutions for each of the 53
benchmark instances i¼ 1;…;53. The neighborhood operators
j¼ 1;…;11 are incorporated in a steepest descent algorithm. Given
a start solution, this algorithm computes the objective function value
of all neighboring solutions with respect to the used neighborhood
operator. Provided that the best neighboring solution shows a lower
total weighted tardiness than the start solution, the best neighboring
solution replaces the start solution and the search is continued from
the new solution. Otherwise, if no improved solution is found in the
neighborhood of the start solution, the steepest descent algorithm
terminates and a new steepest descent algorithm is started with the
next random start solution taken from the sequence si. The entire
procedure stops as soon as one of the two alternative termination
criteria is reached. With the first termination criterion, the steepest
descent algorithm is repeated for neighborhood j¼ 1;…;11 and
instance i¼ 1;…;53 until a fixed number of local optima is generated.
With the second termination criterion, the algorithm stops after a
fixed number of neighboring schedules is evaluated for every
operator and every problem instance.

Using the described schedule generation procedure, we per-
form two experiments on our test suite. In both experiments, the
same sequences si of start solutions are used for the problem
instances by each of the neighborhood operators. In the first
experiment, the performance quality of the neighborhood opera-
tors is assessed without considering how many evaluations a

Table 5
Data to the example 4�2 instance.

Job j wj rj Op. 1 Op. 2

Mch. p1j Mch. p2j dj

1 1 0 1 4 2 2 16
2 1 0 1 4 2 3 16
3 1 0 1 4 2 3 16
4 1 0 1 4 2 1 16

0

M2

M1

16 201042

11 13

21 23

12 14

22 24

0

M2

M1

16 201042

11 14 13 12

21 24 23 22

Fig. 14. Gantt-Charts of the optimal schedule sn (left) and the initial schedule s0 (right).
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steepest descent walk takes. This is achieved by terminating the
procedure after a fixed number of steepest descent walks (termi-
nation criterion 1). In the second experiment, the performance
quality of the neighborhood operators is assessed for a certain
level of computational effort. This is reached by terminating the
procedure after a fixed number of schedule evaluations have been
carried out (termination criterion 2). The number of evaluations is
chosen with regard to the size of an instance, i.e. the number of
jobs and machines involved. Note that the number of produced
local optima usually differs for the competing neighborhood
operators. This kind of comparison allows assessing neighbor-
hoods under a common limitation of the computational effort.

Let BFSði; jÞ denote the best solutions found by neighborhood
operator j for problem instance i. Furthermore, let BKS(i) denote
the objective function value of the best known solution for
problem instance i. In order to assess the solution quality achieved
by a neighborhood operator, we compute the average gap to the
best known solutions:

GapðjÞ ¼ 1
53

X53
i ¼ 1

BFSði; jÞ�BKSðiÞ
BKSðiÞ ½�100%� for j¼ 1;…;11

In the experiments described below, the measure of average gap is
used to assess and to compare the performance of neighborhood
operators. As an alternative measure of performance, we have
considered the relative improvement rate obtained by operators
against an initial solution. In our computations, it turned out that
both measures of performance deliver no significant differences of
the outcome in terms of the resulting ranking.

Experiment 1. For every neighborhood operator and every pro-
blem instance, a total of 100 local optimal schedules is generated.
Hence, over the entire test suite, a total of 5,300 local optimal
schedules is produced by every neighborhood operator. With the
common limit of generated local optima, we measure the absolute
performances of the respective neighborhood operators. Based on
the best schedule found for each problem instance, the average
gap value is computed and reported in the left part of Table 7. The
results indicate that the operators perform very different on the
test suite. Five of the operators (CEI, CETþ2MT, CE4P, CEIþ2MT
and CSR) show a gap between 73% and 78%. This group is followed
by three operators (CE3P, CET and ECET) with a gap of approxi-
mately 82%. The remaining three operators (DOCEI, DICEI and ICT)
form a group which performs with a gap above 95%. The rank
achieved by the operators is also reported in the table. As one
might expect, the rank correlates quite closely with the average
number of improving steps (# Imp) that the operators have
realized during the steepest descent walks. The coefficient of
correlation is �0.86. This is also illustrated by the dominant
downward slope of the curve belonging to Experiment 1 in the
left diagram of Fig. 15. It means that the more improving steps an
operator executes, the better the produced solution quality is.
Considering the total number of schedule evaluations # Eval (in
millions) made by the operators, there is no clear correlation with

the rank obtained. For example, operator CE3P, which belongs to
the medium performing group of operators, consumes more than
four times of the evaluations needed by the second best perform-
ing operator CETþ2MT. The very most schedule evaluations
ð75:5� 106Þ are made by CSR which takes rank 5 among all
operators.

Experiment 2. This experiment is motivated by the observation
that the number of schedule evaluations varies strongly for the
operators in Experiment 1. Therefore, in Experiment 2, we
introduce a common limit on the number of schedule evaluations
available for the neighborhood operators. The idea of the experi-
ment is to measure the relative performances of the neighborhood
operators with regard to the computational effort. Since the size of
the instances of the test suite varies, we impose a size-dependent
limit of 10 � n2 �m2 schedule evaluations. This means that the total
number of evaluations (# Eval) is set constant for every test
instance in this experiment. E.g., for an instance with n¼10 jobs
andm¼10 machines, a total of 100,000 schedules are evaluated by
each of the eleven operators. A total of 12.86 million schedule
evaluations are made by each operator on the entire test suite. This
allows us to compare the computational effort of the operators in
terms of run-time. The time needed by an operator to evaluate
12.86 million schedules on our machine (Intel-Core i7-2600
(3.4 GHz), Linux openSUSE 11.4 (x86_64), using Cþþ) is shown
in the last column (Sec) of Table 7. The observed computation
times indicate that the computational effort of the operators is
within a reasonable range. It differs at most by a factor of 5 as is
observed between the most demanding (CEIþ2MT) and modest
(ECET) operators.

Like in Experiment 1, the assessment and comparison of an
operator is based in this experiment on the average gap, the
associated rank and the average number of improving steps.
Furthermore, the total number of local optima (# LOpt) generated
by the operators for the entire test suite is counted. The corre-
sponding results are reported in the right part of Table 7. Like in
Experiment 1, the operators perform very different for the test
suite but the gained results also allow us to sort them into three
groups. The best performing operators (CETþ2MT, CET, CEIþ2MT)
show a gap between 60% and 69%. This group is followed by four
operators (CEI, ICT, ECET and CE3P) with a gap between 71% and
78%. The group of weaker operators contains four operators (DICEI,
CSR, DOCEI, CE4P) with a gap above 80%. As shown in the left
diagram of Fig. 15 by the curve belonging to Experiment 2, the
correlation observed between the rank and the average number of
improving steps realized by the operators is much weaker than in
the previous experiment. The column # LOpt indicates that the

Table 6
Classification of neighborhood operators based on feasibility and connectivity.

Opt-connected Not opt-connected Open

Feasibility guarantee CT CET
ECET –

ICT
CETþ2MT

No feasibility guarantee CEIþ2MT
CEI CE3P DICEI
CSR CE4P DOCEI

Table 7
Results of the computational study using a single neighborhood operator.

Operator Experiment 1 Experiment 2

Gap # Eval # Imp Rank Gap # LOpt # Imp Rank Sec

CEI 73.69 26.85 17.57 1 71.14 6575 12.14 4 280
CETþ2MT 73.98 3.07 17.13 2 60.17 27,169 14.35 1 271
CE4P 75.34 31.71 15.81 3 84.09 2331 12.63 11 332
CEIþ2MT 76.70 11.42 13.06 4 69.26 12,509 9.55 3 690
CSR 78.44 75.50 16.05 5 80.90 4781 10.41 9 486
CE3P 81.83 14.40 12.29 6 78.53 6023 10.44 7 231
CET 81.84 2.68 15.10 7 67.03 28,947 13.43 2 156
ECET 83.32 4.70 14.50 8 72.45 18,657 12.40 6 138
DOCEI 96.13 3.37 4.57 9 81.18 28,266 4.42 10 351
DICEI 96.70 3.10 4.30 10 80.63 28,918 4.30 8 306
ICT 100.02 0.53 3.39 11 72.29 108,700 3.79 5 487
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operators exploit the available capacity for schedule evaluations
very differently. While, for example, operator CEI produces about
6.600 local optimal schedules, operator ICT comes along with more
than the tenfold. Still, both operators differ only by one rank.

Comparing the outcome of both experiments, it is striking that
nearly all operators have reached a better gap in Experiment 2.
With the exception of CSR and CE4P, the operators have also
generated more local optima in this experiment than in
Experiment 1. Remember that a fixed limit of 5,300 local optimal
schedules is prescribed in Experiment 1. While CSR and CE4P have
performed less steepest descent walks in Experiment 2 than in
Experiment 1, the other operators have actually produced more
local optimal schedules here (see column # LOpt). The larger
number of restarts performed by the vast majority of operators in
Experiment 2 explains the better gap which is observed in
Experiment 2. We can also see from Table 7 and the right diagram
of Fig. 15 that the operators benefit quite consistently from an
increased number of restarts. For example, operators CETþ2MT,
CET, DOCEI and DICEI make about 27,000 and 29,000 restarts in
Experiment 2 which respectively leads to an improvement (Δ gap)
of 14% to 16% against Experiment 1.

The solution quality achieved by the operators in the two
experiments is not perfectly consistent. It could be possible that
the operator performance varies on the benchmark set because

instances range from 10 to 30 jobs and 5 to 15 machines. This fact
might create different conditions for the operators. For example, a
poor performing operator like DOCEI may not be able to show its
true potential when solving small 10�10 instances since critical
blocks are typically very short in these instances. Therefore, to
analyze the sensitivity of the operators, we reconsider the com-
putational results of Experiments 1 and 2 on the background of
instance sizes (n�m) met in the test suite. Actually, with sizes of
10�5, 15�5, 20�5, 10�10, 15�10, 20�10, 30�10, and 15�15,
we observe eight different instance classes in the test suite. The
corresponding outcomes of the operators in terms of achieved
average gaps, the number of schedule evaluations made in
Experiment 1 as well as the generated local optima in
Experiment 2 are shown in the Appendix. For the instance class
with instance size 10�5, the average gap of the operators ranges
between 18% and 50%, see Tables A1 and A3. But the performance
quality worsens significantly if larger problem instances have to be
solved. The poorest results are observed for the instances 15�15.
The gap achieved for this instance class never falls below 100%.
The ranks achieved by the operators in Experiment 1 and 2 within
each of the eight instance classes are shown by box plots in Fig. 16.
The bar within the boxes represents the median of the ranks
obtained by an operator on the instance classes, while the boxes
represent the 50% range of ranks closest to the median, known as
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interquartile range. The whiskers appearing at some of the boxes
indicate the 1.5-times interquartile range. Note that the abscissa of
the left (right) plot is arranged according to the total ranks
achieved by the operators in Experiment 1 (Experiment 2). For
Experiment 1, the top and the bottom of the boxes are mostly

stretched over only two or three ranks. Furthermore, the dete-
rioration of the medians correlates quite well with the total ranks
of the operators. We observe that the weakest operator ICT also
achieves the last rank in each of the instance classes. Turning to
Experiment 2, the heights of the boxes and the distance of the
whiskers vary little stronger. Here, operators behave more sensi-
tive regarding different instance classes, but a correlation is clearly
observable.

The size n�m of the instances influences the number of
schedule evaluations made in Experiment 1 as well as the number
of generated local optima in Experiment 2. For example, in
Experiment 1, 56% of the schedule evaluations made by CEI are
carried out for instances belonging to class 30�10 (value 15.06,
see Table A2). In Experiment 2, the number of schedule evalua-
tions done by CEI are limited to 10 � 302 � 102 ¼ 9� 105 for
instances of size 30�10. Therefore, in Experiment 2, only 174
local optima are generated by CEI for the entire instance class (see
Table A4). As the class consists of five instances, a total of 500 local
optima is generated by an operator for the class in Experiment 1.
Consequently, the average gap produced by CEI in Experiment 1
(66.19, Table A1) is better than in Experiment 1 (69.13, Table A3).
Contrary outcomes are e.g. observed for CEI with regard to
instance classes 10�10 and 15�15. Obviously, some instances
require a very large number of schedule evaluations for reaching
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Table 8
Results of pairs of neighborhood operators applied jointly.

Operator 1 Operator 2 Experiment 3 Experiment 4

Gap # Eval # Imp Rank Gap # LOpt # Imp Rank

CETþ2MT CE4P 62.64 28.45 20.45 1 70.03 2965 17.55 21
CEI CETþ2MT 63.43 19.90 22.12 2 61.65 7464 15.87 3
CEI CEIþ2MT 64.31 28.97 21.84 3 62.84 5652 15.49 7
CE4P CEIþ2MT 64.49 39.81 21.13 4 69.48 2427 17.33 19
CETþ2MT CE3P 64.65 13.82 20.23 5 62.13 6084 17.52 5
CETþ2MT CSR 65.15 54.93 20.86 6 65.14 5684 13.63 10
CEIþ2MT CE3P 65.40 21.89 20.12 7 72.04 4696 16.22 24
CEIþ2MT CSR 65.47 64.15 21.30 8 66.64 4639 13.82 13
CEIþ2MT CET 67.33 12.16 21.32 9 61.78 10,617 15.84 4
CETþ2MT CEIþ2MT 67.65 11.76 20.14 10 60.43 11,213 14.52 1
CETþ2MT CET 68.85 3.70 20.06 11 60.88 19,506 17.58 2
CEIþ2MT ECET 68.93 13.48 20.79 12 63.68 9268 15.72 8
CETþ2MT ECET 69.58 5.83 19.64 13 62.46 15,548 16.79 6
CETþ2MT DOCEI 70.33 13.23 19.42 14 66.66 11,694 14.24 14
CEIþ2MT DICEI 70.56 17.47 16.70 15 65.42 8556 12.69 11
CEIþ2MT DOCEI 70.71 17.18 16.83 16 68.04 8548 12.77 17
CETþ2MT DICEI 71.27 13.40 19.14 17 67.57 11,750 14.07 16
CEI CE3P 71.74 26.84 18.80 18 78.26 4369 14.39 34
CETþ2MT ICT 71.84 4.22 19.11 19 63.69 20,788 16.13 9
CEI CE4P 72.55 39.28 18.23 20 77.49 2711 14.29 32
CEI CSR 72.70 60.29 18.46 21 73.95 4830 11.77 28
CEIþ2MT ICT 72.93 11.02 16.93 22 67.53 11,912 13.05 15
CE4P DOCEI 73.57 36.42 16.73 23 80.95 2634 14.16 41
CEI ECET 73.76 17.62 18.09 24 69.12 8456 12.96 18
CE4P ICT 73.94 30.04 16.31 25 80.82 2922 14.19 40
CSR DICEI 74.20 67.05 17.22 26 76.50 4976 11.48 30
CE3P ECET 74.32 5.11 16.28 27 73.17 6298 14.69 25
CEI ICT 74.50 22.91 19.12 28 69.83 7813 13.21 20
CE4P DICEI 74.56 36.39 16.50 29 81.26 2636 13.97 42
CSR DOCEI 74.76 68.05 17.54 30 77.77 4976 11.54 33
CE4P ECET 75.52 23.98 15.75 31 78.50 3397 14.06 36
CSR ICT 76.74 60.12 17.08 32 79.11 6027 11.13 39
CSR ECET 78.55 42.45 16.11 33 75.58 6753 10.83 29
CET DOCEI 78.72 10.68 16.53 34 71.14 12,920 12.54 22
ECET DOCEI 79.12 11.92 16.10 35 73.21 11,041 12.44 26
ECET DICEI 79.16 11.83 15.68 36 73.30 11,072 12.27 27
CET DICEI 79.60 10.51 16.05 37 71.54 12,962 12.37 23
CE3P DOCEI 80.44 16.92 13.76 38 78.35 6556 10.81 35
CE3P DICEI 80.61 16.86 13.42 39 66.33 6573 10.65 12
CE3P ICT 81.09 11.28 13.24 40 76.74 7826 11.22 31
DOCEI ICT 93.55 2.78 5.52 41 79.09 30,370 5.50 38
DICEI ICT 93.82 2.55 5.18 42 78.85 31,258 5.31 37
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those 100 local optima in Experiment 1, without being able to
reduce the gap. In Experiment 2, perhaps nothing changes for
these instances, while for other instances, much more than 100
local optima are potentially generated due to the 10 � n2 �m2

schedule limit, effecting a significant reduction of the average
gap compared to Experiment 1.

Nevertheless, the above analysis justifies dividing the set of
operators into weak, medium and strong performing ones on the
basis of their ranks achieved in Experiments 1 and 2. With respect
to these experiments, we obtain two different groupings which are
shown in Fig. 17. Merely CETþ2MT and CEIþ2MT perform strong
in both experiments. Two operators perform on a medium level
and two operators on a weak level in both experiments. The rest of
the operators perform differently in the two experiments.

Nevertheless, even the best performing operators produce an
average gap above 60%, meaning that the total weighted tardiness
of the best found solutions deviate significantly from the total
weighted tardiness of the best known solution. In other words,
local search with a single operator generates a relatively weak
solution quality. Unfortunately, this is not alleviated by simply
increasing the run-time of the local search. For example, doubling
the number of schedule evaluations in Experiment 2 yields a 7.0%
reduction of the gap, and triplication yields a 8.8% reduction.
Obviously, multiplying the computational effort does not pay off.

6.3. Local search with multiple neighborhood operators

Taking as granted that different operators possess individual
capabilities, it might be profitable to combine them in a local search
procedure. In this section, we search for pairs of operators which
complement one another in a favorable fashion. For this purpose, the
above experiments are repeated with the modification of jointly

applying two neighborhood operators in the steepest descent search
algorithm instead of just a single one. The neighborhood operators are
used alternately until neither of them can improve the current
schedule anymore. This means that the algorithm switches the two
operators between two iterations, independently of whether an
improving schedule has been generated or not. Hence, both operators
are able to contribute to the progress made even if one of the
operators produces much stronger improvements than the other one.
Finally, the algorithm ends up with a schedule which is local optimal
with respect to both neighborhood definitions. In the experiments we
consider only combinations of operators which appear compatible.
Two operators are assumed incompatible if one operator includes the
other (like CSR includes CET) or if both operators belong to the same
perturbation class (like CET and ICT, see Table 4). In total, we
investigate 42 combinations of the eleven neighborhood operators.
The results achieved by these combinations of operators are shown in
Table 8. Here, the operator which has performed better in Experiment
1 is named as Operator 1. Note that Experiments 3 and 4 are designed
just like Experiments 1 and 2 above and that all performance
indicators are computed in the same way.

Experiment 3. The gap observed for the considered operator
combinations vary in a range from 62% to 94%. While the worst
operator combinations are composed from the two worst perform-
ing single operators (DICEI and ICT), the best operator combination
is formed by CETþ2MT and CE4P which achieve rank 2 and
3 alone. Only the second best operator combination applies the
two best single operators CEI and CETþ2MT. In the next two
positions we observe very similar combinations with only
CEIþ2MT taking the role of CETþ2MT. It is also worth to mention
that these two operators are always involved in the top 17
operator combinations. Apparently, perturbing schedules on mul-
tiple machines (þ2MT) is advantageous in combinations with all
other operators considered. But applying the two operators
together yields merely rank 10. We further observe that combining
operators leads to a significant increase in the number of improv-
ing steps made until a local optimum is reached. The operator
combination which has made the largest number of improving
steps has achieved the second best gap. The best combination
(CETþ2MT and CE4P) improves the gap of the best single operator
CEI by over 10%. The following 22 combinations also achieve gaps
better than CEI alone. However, we also observe that not all tested
operator combinations are really compatible. Some combinations
obtain a gap which improves the gap achieved by the better of the
two operators only marginally. In other cases, combinations per-
form even worse (like the combination of CEI and ICT).

Experiment 4. The outcome of this experiment is quite similar to
the outcome of Experiment 3. The gap achieved by the operator
combinations is in most cases a little better than in Experiment 3.
If all operator combinations make the same number of schedule

Table 9
Performance comparison of steepest descent algorithm and simulated annealing.

Operator Experiment 2 Experiment 5

SA (10 runs) SA (100 runs)

Gap Rank Gap Rank Gap Rank

CETþ2MT 60.17 1 34.49 1 20.81 1
CET 67.03 2 48.91 3 30.74 3
CEIþ2MT 69.26 3 53.79 5 35.74 5
CEI 71.14 4 47.32 2 30.91 4
ICT 72.29 5 107.63 11 85.87 11
ECET 72.45 6 50.04 4 30.00 2
CE3P 78.53 7 78.82 7 48.07 7
DICEI 80.63 8 90.45 10 63.68 10
CSR 80.90 9 64.68 6 42.93 6
DOCEI 81.18 10 86.55 9 61.31 9
CE4P 84.09 11 84.63 8 52.61 8

Table A1
Average gap in Experiment 1 according to the instance classes.

All Rk 10�5 15�5 20�5 10�10 15�10 20�10 30�10 15�15

CEI 73.69 1 28.40 45.25 53.79 79.07 83.81 86.38 66.19 132.68
CETþ2MT 73.98 2 23.35 50.76 51.54 78.07 75.51 89.50 68.87 143.61
CE4P 75.34 3 25.95 50.47 54.19 78.66 87.64 87.18 68.82 141.15
CEIþ2MT 76.70 4 28.26 48.36 54.45 83.74 85.82 89.10 67.40 138.20
CSR 78.44 5 29.74 50.22 53.58 85.02 85.80 91.24 68.62 146.19
CE3P 81.83 6 28.89 53.68 55.70 88.68 92.67 96.72 71.78 148.70
CET 81.84 7 34.26 56.12 62.37 86.92 86.73 95.52 73.53 146.10
ECET 83.32 8 32.81 56.09 62.95 89.49 92.31 95.72 74.72 146.41
DOCEI 96.13 9 42.42 69.00 71.21 102.10 104.84 106.12 82.08 175.78
DICEI 96.70 10 42.42 68.87 72.69 102.73 109.99 105.83 81.98 173.43
ICT 100.02 11 46.62 71.21 73.89 105.48 113.97 109.03 84.47 181.30
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evaluations the combination of CETþ2MT with CEIþ2MT per-
forms best with a gap of about 60%. Six of the Top 10 combinations
of Experiment 3 are among the Top 10 combinations of
Experiment 4. However, no operator combination of Experiment
4 achieve a better gap than the best performing single operator
CETþ2MT in Experiment 4. Obviously, the number of operator
combinations which fail in this experiment is much higher than in
Experiment 3. This is explained by the observation that the weaker
operator often consumes the vast majority of schedule evaluations
and hinders the better operator to unfold its full potential.

To summarize, combining two adequate neighborhood opera-
tors has a significant impact on the gained absolute performance.
However, the achievable quality is not yet satisfying. Moreover, the
relative performance deteriorates in some cases. The best achieved
gap in all experiments is reported on the single application of
CETþ2MT in Experiment 2. Therefore, the computational results
obtained with more than two neighborhood operators are not
included in this study.

6.4. Local search with a meta-heuristic

In order to test the capabilities of the different neighborhood
operators when embedded in a local search based meta-heuristic, we
have implemented a simple simulated annealing algorithm (SA). The
algorithm starts with a random solution, randomly perturbs this
solution by one of the eleven neighborhood operators, and accepts
the new solution as the current solution in case it is improving. In
case of deteriorations, the new solution is accepted as the current
solutionwith a probability of e�Δ=T . The term Δmeasures the relative
deterioration of the new solution against the current solution, and T
denotes the temperature. Initially, SA starts with a temperature
T0 ¼ 7:5 which is reduced according to a geometric cooling scheme
Ttþ1 ¼ T0:9

t to almost zero ðT100 � 0Þ within 100 cooling steps. The
parameters are set such that a relative deterioration of Δ¼ 10% is
accepted after 50 cooling steps with a probability close to 0.1.

Experiment 5. For every neighborhood operator and for every problem
instance of the test suite, a total of ten SA runs are executed. In each run,

Table A2
# Eval in Experiment 1 according to the instance classes (in millions).

All 10�5 15�5 20�5 10�10 15�10 20�10 30�10 15�15

CEI 26.85 0.30 1.38 4.00 0.91 1.10 3.25 15.06 0.85
CETþ2MT 3.07 0.07 0.18 0.36 0.26 0.22 0.47 1.29 0.22
CE4P 31.71 0.68 1.95 4.02 3.11 2.90 6.37 9.76 2.93
CEIþ2MT 11.42 0.16 0.66 1.81 0.52 0.51 1.39 5.92 0.43
CSR 75.50 0.46 3.01 11.27 1.15 1.91 6.65 49.83 1.22
CE3P 14.40 0.28 0.80 1.69 1.15 1.03 2.23 6.20 1.01
CET 2.68 0.06 0.16 0.31 0.25 0.22 0.42 1.06 0.21
ECET 4.70 0.10 0.31 0.63 0.38 0.35 0.71 1.91 0.32
DOCEI 3.37 0.06 0.22 0.50 0.25 0.21 0.46 1.46 0.21
DICEI 3.10 0.06 0.19 0.42 0.25 0.20 0.44 1.32 0.21
ICT 0.53 0.01 0.03 0.04 0.09 0.05 0.08 0.15 0.07

Table A3
Average gap in Experiment 2 according to the instance classes.

All Rk 10�5 15�5 20�5 10�10 15�10 20�10 30�10 15�15

CEI 71.14 4 35.88 56.11 62.47 67.89 83.81 86.93 69.13 115.30
CETþ2MT 60.17 1 18.41 50.68 50.70 55.73 65.63 81.38 61.74 108.64
CE4P 84.09 11 50.48 63.76 62.11 86.74 97.09 93.94 70.57 141.15
CEIþ2MT 69.26 3 28.26 55.24 57.98 69.07 80.74 85.30 67.54 110.41
CSR 80.90 9 48.00 69.36 66.37 76.95 87.55 101.65 79.65 127.92
CE3P 78.53 7 31.45 61.73 59.52 79.15 92.67 96.72 72.72 132.64
CET 67.03 2 25.28 56.12 61.41 63.11 74.37 87.76 67.25 111.10
ECET 72.45 6 31.72 56.09 62.95 70.86 84.11 88.69 70.06 119.30
DOCEI 81.18 10 40.61 69.00 71.21 76.20 87.22 98.85 77.91 141.34
DICEI 80.63 8 40.19 68.87 72.69 75.29 84.61 98.06 77.51 141.72
ICT 72.29 5 38.85 58.87 65.47 66.76 82.04 90.00 73.83 116.83

Table A4
# LOpt in Experiment 2 according to the instance classes.

All 10�5 15�5 20�5 10�10 15�10 20�10 30�10 15�15

CEI 6575 319 127 69 3595 630 354 174 1307
CETþ2MT 27,169 1344 740 526 13,503 2793 1822 1176 5265
CE4P 2331 82 37 25 1254 192 116 73 552
CEIþ2MT 12,509 559 259 150 6447 1299 813 434 2548
CSR 4781 217 75 35 2821 433 204 86 910
CE3P 6023 234 135 100 2862 580 424 311 1377
CET 28,947 1464 1009 856 12,620 3000 2494 2203 5301
ECET 18,657 878 531 420 8643 1885 1495 1240 3565
DOCEI 28,266 1304 981 903 11,317 2939 2811 2941 5070
DICEI 28,918 1343 1161 1200 10,927 2958 2969 3342 5018
ICT 1,08,700 5027 4897 5593 36,390 10,820 12,539 15,797 17,637
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a number of n2 �m2 schedule evaluations is performed with respect to
the size of the problem instance. In other words, the temperature used
by SA is cooled down by one step after ðn2 �m2Þ=100 evaluations have
been carried out. In this way, the same computational effort is spent for
the test suite as in Experiment 2. The outcome in this experiment is ten
local optima, each one returned as the best found solution in one SA run.
In a repetition of this experiment, a total of 100 SA runs are executed
consuming exactly ten times the effort spent in Experiment 2. The
average gap for both SA computations is shown in Table 9 and compared
with the outcome of Experiment 2. Under the same computational
amount as in Experiment 2 (SA,10 runs) the average gap achieved by six
of the eleven neighborhoods is improved significantly. The superior
neighborhood CETþ2MT which holds rank 1 in both experiments can
almost halve the average gap when embedded in a meta-heuristic. Five
neighborhoods, however, lead to a poorer solution when using SA. In
particular ICT fails completely. While it holds rank 5 in Experiment 2, it
achieves only the last rank in this experiment with an average gap
worsened by 50%. Finally, the performance of the neighborhoods turns
out to be fairly different under the meta-heuristic. Nevertheless, the best
four neighborhoods of Experiment 2 (CETþ2MT, CET, CEIþ2MT, and
CEI) appear in the top 5 of Experiment 5 as well. It is also interesting to
aware that the meta-heuristic can take strong benefits from a longer
run-time in terms of a higher number of restarts. In contrast to the
steepest descent algorithm, SA continuously reduces the average gap
achieved by all neighborhoods as it is demonstrated in the 100 runs
computations (SA, 100 runs)). Unfortunately, this effect diminishes very
quickly when the number of restarts is increased further on. A
substantial further improvement requires to enhance the SA algorithm
(e.g. by reheating) which is beyond the scope of the paper.

7. Conclusion

This paper provides a reformulation of five well known
schedule perturbation schemes, all based on the disjunctive graph
model, and develops six new ones. It further provides some new
results on feasibility guarantees and connectivity properties of
neighborhood definitions. To investigate the size and the improve-
ment rate of the neighborhoods, we have conducted a thorough
computational study based on a broad set of challenging bench-
mark instances. The study compares the quality of schedules
achieved through a set of neighborhood search operators in a
steepest descent walk. Based on the computational results, a group
of five neighborhood operators performs efficiently in terms of the
absolute performance observed for the total weighted tardiness
measure. But only the operator CETþ2MT is really convincing
because of its excellent trade-off between computational effort
and solution quality. Obtaining a better solution quality through
local search can be achieved by combining the exploration
strategies of at least two different neighborhood operators. The
selection of operators, however, has to be done carefully. Numer-
ous combinations of operators investigated in this study have
ended up in a very disappointing schedule quality. This is because
their individual principles may interfere with each other. Other
combinations of operators support each other by leading to
schedule quality which none of them can generate on its own.
Although, there is no dominant pair of operators identified in the
tests, a good choice is combining a single machine perturbation
operator with a multiple machine perturbation operator. Anyway,
the obtainable solution quality is limited when compared to the
best known solutions. Therefore, the operators have been
embedded into a local-search based meta-heuristic to analyze

their behavior in a more sophisticated optimization algorithm.
Using the neighborhoods within a simple simulated annealing
algorithm indicates their different potential. Some of the consid-
ered neighborhoods allow extending the gained solution quality
far beyond the level obtained by local search walks. Anyway, the
most successful stand-alone operators turn out again to be the
most promising ones under the control of a meta-heuristic.

Appendix A. Detailed results of Experiments 1 and 2

Tables A1, A2, A3, and A4.
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